Skip to main content
Log in

Influence of sediment composition on PAH toxicity using zebrafish (Danio rerio) and Japanese medaka (Oryzias latipes) embryo-larval assays

  • PAHs and fish – Exposure monitoring and adverse effects – from molecular to individual level
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Due to hydrophobic and persistent properties, polycyclic aromatic hydrocarbons (PAHs) have a high capacity to accumulate in sediment. Sediment quality criteria, for the assessment of habitat quality and risk for aquatic life, include understanding the fate and effects of PAHs. In the context of European regulation (REACH and Water Framework Directive), the first objective was to assess the influence of sediment composition on the toxicity of two model PAHs, benzo[a]pyrene and fluoranthene using 10-day zebrafish embryo-larval assay. This procedure was undertaken with an artificial sediment in order to limit natural sediment variability. A suitable sediment composition might be then validated for zebrafish and proposed in a new OECD guideline for chemicals testing. Second, a comparative study of toxicity responses from this exposure protocol was then performed using another OECD species, the Japanese medaka. The potential toxicity of both PAHs was assessed through lethal (e.g., survival, hatching success) and sublethal endpoints (e.g., abnormalities, PMR, and EROD) measured at different developmental stages, adapted to the embryonic development time of both species. Regarding effects observed for both species, a suitable artificial sediment composition for PAH toxicity testing was set at 92.5 % dry weight (dw) silica of 0.2–0.5-mm grain size, 5 % dw kaolin clay without organic matter for zebrafish, and 2.5 % dw blond peat in more only for Japanese medaka. PAH bioavailability and toxicity were highly dependent on the fraction of organic matter in sediment and of the K ow coefficients of the tested compounds. The biological responses observed were also dependent of the species under consideration. Japanese medaka embryos appeared more robust than zebrafish embryos for understanding the toxicity of PAHs following a sediment contact test, due to the longer exposure duration and lower sensitivity of sediment physical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AhR:

Aryl hydrocarbon receptor

PAH:

Polycyclic aromatic hydrocarbon

BaP:

Benzo[a]pyrene

Fluo:

Fluoranthene

hpf:

Hours post-fertilization

dpf:

Days post-fertilization

EROD:

Ethoxyresorufin-O-deethylase

PMR:

Photomotor response

References

  • Ahlf W, Hollert H, Neumann-Hensel H, Ricking M (2002) A guidance for the assessment and evaluation of sediment quality. J Soils Sediments 2:37–42

    Article  CAS  Google Scholar 

  • Akkanen J, Kukkonen JVK (2003) Measuring the bioavailability of two hydrophobic organic compounds in the presence of dissolved organic matter. Environ Toxicol Chem 22:518–524

    Article  CAS  Google Scholar 

  • Akkanen J, Lyytikäinen M, Tuikka A, Kukkonen JVK (2005) Dissolved organic matter in pore water of freshwater sediments: effects of separation procedure on quantity, quality and functionality. Chemosphere 60:1608–1615

    Article  CAS  Google Scholar 

  • Ali S, Champagne DL, Richardson MK (2012) Behavioral profiling of zebrafish embryos exposed to a panel of 60 water-soluble compounds. Behav Brain Res 228:272–283

    Article  CAS  Google Scholar 

  • Au DWT, Chen P, Pollino C (2004) Cytological changes in association with ethoxyresorufin o-deethylase induction in fish upon dietary exposure to benzo[a]pyrene. Environ Toxicol Chem 23:1043–1050

    Article  CAS  Google Scholar 

  • Barjhoux I, Baudrimont M, Morin B, Landi L, Gonzalez P, Cachot J (2012) Effects of copper and cadmium spiked-sediments on embryonic development of Japanese medaka (Oryzias latipes). Ecotoxicol Environ Saf 79:272–282

    Article  CAS  Google Scholar 

  • Barron MG, Carls MG, Heintz R, Rice SD (2004) Evaluation of fish early life-stage toxicity models of chronic embryonic exposures to complex polycyclic aromatic hydrocarbon mixtures. Toxicol Sci 78:60–67

    Article  CAS  Google Scholar 

  • Baumard P, Budzinski H, Garrigues P (1998) Polycyclic aromatic hydrocarbons in sediments and mussels of the western Mediterranean sea. Environ Chem 17:765–776

    Article  CAS  Google Scholar 

  • Baumard P, Budzinski H, Garrigues P, Narbonne JF (1999) Polycyclic aromatic hydrocarbon (PAH) burden of mussels (Mytilys sp.) in different marine environments in relation with sediment PAH contamination, and bioavailability. Mar Environ Res 47:415–439

    Article  CAS  Google Scholar 

  • Behar F, Leblond C, Saint-Paul C (1989) Analysis of pyrolysis effluents in an open and closed system. Oil Gas Sci Technol 44:387–411

    Article  CAS  Google Scholar 

  • Belanger SE, Balon EK, Rawlings JM (2010) Saltatory ontogeny of fishes and sensitive early life stages for ecotoxicology tests. Aquat Toxicol 97:88–95

    Article  CAS  Google Scholar 

  • Benlahcen KT, Chaoui A, Budzinski H, Bellocq J, Garrigues PH (1997) Distribution and sources of polycyclic aromatic hydrocarbons in some Mediterranean coastal sediments. Mar Pollut Bull 34:298–305

    Article  CAS  Google Scholar 

  • Bilotta J, Saszik S, Givin CM, Hardesty HR, Sutherland SE (2002) Effects of embryonic exposure to ethanol on zebrafish visual function. Neurotoxicol Teratol 24:759–766

    Article  CAS  Google Scholar 

  • Bols NC, Schirmer K, Joyce EM, Dixon DG, Greenberg BM, Whyte JJ (1999) Ability of polycyclic aromatic hydrocarbons to induce 7-ethoxyresorufin-o-deethylase activity in a trout liver cell line. Ecotoxicol Environ Saf 44:118–128

    Article  CAS  Google Scholar 

  • Budzinski H, Letellier M, Thompson S, LeMenach K, Garrigues P (2000) Combined protocol for the analysis of polycyclic aromatic hydrocarbons (PAHs) and polychlorobiphenyls (PCBs) from sediments using focussed microwave assisted (FMW) extraction at atmospheric pressure. Fresenius J Anal Chem 367:165–171

    Article  CAS  Google Scholar 

  • Burton JGA (2002) Sediment quality criteria in use around the world. Limnology 3:65–76

    Article  CAS  Google Scholar 

  • Cachot J, Geffard O, Augagneur S, Lacroix S, Le Menach K, Peluhet L, Couteau J, Denier X, Devier MH, Pottier D, Budzinski H (2006) Evidence of genotoxicity related to high PAH content of sediments in the upper part of the Seine estuary (Normandy, France). Aquat Toxicol 79:257–267

    Article  CAS  Google Scholar 

  • Carlson E, Li Y, Zelikoff JT (2004) Benzo[a]pyrene-induced immunotoxicity in Japanese medaka (Oryzias latipes): relationship between lymphoid CYP1A activity and humoral immune suppression. Toxicol Appl Pharmacol 201:40–52

    Article  CAS  Google Scholar 

  • Carney SA, Peterson RE, Heideman W (2004) Hydrocarbon receptor / aryl hydrocarbon receptor nuclear translocator pathway causes developmental toxicity through a CYP1A-independent mechanism in zebrafish. Mol Pharmacol 66:512–521

    CAS  Google Scholar 

  • Castaño A, Bols N, Braunbeck T, Dierickx P, Halder M, Isomaa B, Kawahara K, Lee LEJ, Mothersill C, Pärt P, Repetto G, Sintes JR, Rufli H, Smith R, Wood C, Segner H (2003) The use of fish cells in ecotoxicology. Altern Lab Anim 31:317–351

    Google Scholar 

  • Champagne DL, Hoefnagels CCM, de Kloet RE, Richardson MK (2010) Translating rodent behavioral repertoire to zebrafish (Danio rerio): relevance for stress research. Behav Brain Res 214:332–342

    Article  Google Scholar 

  • Costa J, Ferreira M, Rey-Salgueiro L, Reis-Henriques MA (2011) Comparison of the waterborne and dietary routes of exposure on the effects of Benzo(a)pyrene on biotransformation pathways in Nile tilapia (Oreochromis niloticus). Chemosphere 84:1452–1460

    Article  CAS  Google Scholar 

  • Cowden J, Padnos B, Hunter D, MacPhail R, Jensen K, Padilla S (2012) Developmental exposure to valproate and ethanol alters locomotor activity and retino-tectal projection area in zebrafish embryos. Reprod Toxicol 33:165–173

    Article  CAS  Google Scholar 

  • Dabestani R, Ivanov IN (1999) A compilation of physical, spectroscopic and photophysical properties of polycyclic aromatic hydrocarbons. Photochem Photobiol 70:10–34

    CAS  Google Scholar 

  • Daouk T (2011) Effects de contaminations d’embryons et d’adultes de poissons zèbres (Danio rerio) par des PCB et des HAP. Ph D. Thesis (in French), 162 pages

  • De Esch C, van der Linde H, Slieker R, Willemsen R, Wolterbeek A, Woutersen R, De Groot D (2012) Locomotor activity assay in zebrafish larvae: influence of age, strain and ethanol. Neurotoxicol Teratol 34:425–433

    Article  Google Scholar 

  • Djomo JE, Garrigues P, Narbonne JF (1996) Uptake and depuration of polycyclic aromatic hydrocarbons from sediment by the zebrafish (Brachydanio rerio). Environ Toxicol Chem 15:1177–1181

    Article  CAS  Google Scholar 

  • Drapeau P, Saint-Amant L, Buss RR, Chong M, McDearmid JR, Brustein E (2002) Development of the locomotor network in zebrafish. Prog Neurobiol 68:85–111

    Article  CAS  Google Scholar 

  • EC (2000) Directive 2000/60/EC of the European Parliament and of the Council of 2000, October 23rd. Framework for community action in the field of water policy. Off J Eur Parliam L327:1–82

    Google Scholar 

  • El Nemr A, Said TO, Khaled A, El-Sikaily A, Abd-Allah AM (2007) The distribution and sources of polycyclic aromatic hydrocarbons in surface sediments along the Egyptian Mediterranean coast. Environ Monit Assess 124:343–359

    Article  Google Scholar 

  • Embry MR, Belanger SE, Braunbeck T, Galay-Burgos M, Halder M, Hinton DE, Léonard M, Lillicrap A, Norberg-King T, Whale G (2010) The fish embryo toxicity test as an animal alternative method in hazard and risk assessment and scientific research. Aquat Toxicol 97:79–87

    Article  CAS  Google Scholar 

  • EU (2010) Directive 2010/63/EU of the European Parliament and of the Council of 2010, September 22nd. Legislation for the protection of animals used for scientific purposes. Off J Eur Union L276/33-79

  • Fallahtafti S, Rantanen T, Brown RS, Snieckus V, Hodson PV (2012) Toxicity of hydroxylated alkyl-phenanthrenes to the early life stages of Japanese medaka (Oryzias latipes). Aquat Toxicol 106–107:56–64

    Article  Google Scholar 

  • Fang X, Thornton C, Scheffler BE, Willett KL (2013) Benzo[a]pyrene decreases global and gene specific DNA methylation during zebrafish development. Environ Toxicol Pharmacol 36:40–50

    Article  CAS  Google Scholar 

  • Fanget B, Devos O, Naffrechoux E (2002) Rôle des acides humiques dans le transfert du pyrène entre les minéraux argileux et l’eau. Rev Sci Eau 15:95–108

    CAS  Google Scholar 

  • Gonçalves R, Scholze M, Ferreira AM, Martins M, Correia AD (2008) The joint effect of polycyclic aromatic hydrocarbons on fish behavior. Environ Res 108:205–213

    Article  Google Scholar 

  • Guasch H, Ginebreda A, Geiszinger A, Akkanen J, Slootweg T, Mäenpää K, Agbo S, Gallampois C, Kukkonen JVK (2012) Bioavailability of organic contaminants in freshwater environments. The Handbook Environ Chem, Berlin, Heidelberg, pp 53

  • Haitzer M, Höss S, Traunspurger W, Steinberg C (1999) Relationship between concentration of dissolved organic matter (DOM) and the effect of DOM on the bioconcentration of benzo[a]pyrene. Aquat Toxicol 45:147–158

    Article  CAS  Google Scholar 

  • Hawliczek A, Nota B, Cenijn P, Kamstra J, Pieterse B, Winter R, Winkens K, Hollert H, Segner H, Legler J (2012) Developmental toxicity and endocrine disrupting potency of 4-azapyrene, benzo[b]fluorene and retene in the zebrafish Danio rerio. Reprod Toxicol 33:213–223

    Article  CAS  Google Scholar 

  • Heintz RA, Rice SD, Wertheimer AC, Bradshaw RF, Thrower FP, Joyce JE, Short JW (2000) Delayed effects on growth and marine survival of pink salmon Oncorhynchus gorbuscha after exposure to crude oil during embryonic development. Mar Ecol Prog Ser 208:205–216

    Article  Google Scholar 

  • Hengstler JG, Foth H, Kahl R, Kramer P, Lilienblum W, Schulz T, Schweinfurth H (2006) The REACH concept and its impact on toxicological sciences. Toxicology 220:232–239

    Article  CAS  Google Scholar 

  • Hill AJ, Teraoka H, Heideman W, Peterson RE (2005) Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicol Sci 86:6–19

    Article  CAS  Google Scholar 

  • Hollert H, Dürr M, Erdinger L, Braunbeck T (2000) Cytotoxicity of settling particulate matter and sediments of the neckar river (Germany) during a winter flood. Environ Toxicol Chem 19:528–534

    Article  CAS  Google Scholar 

  • Hollert H, Keiter S, König N, Rudolf M, Ulrich M, Braunbeck T (2003) A new sediment contact assay to assess particle-bound pollutants using zebrafish (Danio rerio) embryos. J Soils Sediments 3:197–207

    Article  Google Scholar 

  • Höss S, Ahlf W, Fahnenstich C, Gilberg D, Hollert H, Melbye K, Meller M, Hammers-Wirtz M, Heininger P, Neumann-Hensel H, Ottermanns R, Ratte H-T, Seiler T-B, Spira D, Weber J, Feiler U (2010) Variability of sediment-contact tests in freshwater sediments with low-level anthropogenic contamination–determination of toxicity thresholds. Environ Pollut 158:2999–3010

    Article  Google Scholar 

  • Huang L, Wang C, Zhang Y, Li J, Zhong Y, Zhou Y, Chen Y, Zuo Z (2012) Benzo[a]pyrene exposure influences the cardiac development and the expression of cardiovascular relative genes in zebrafish (Danio rerio) embryos. Chemosphere 87:369–375

    Article  CAS  Google Scholar 

  • Incardona JP, Day HL, Collier TK, Scholz NL (2006) Developmental toxicity of 4-ring polycyclic aromatic hydrocarbons in zebrafish is differentially dependent on AH receptor isoforms and hepatic cytochrome P4501A metabolism. Toxicol Appl Pharmacol 217:308–321

    Article  CAS  Google Scholar 

  • Incardona JP, Linbo TL, Scholz NL (2011) Cardiac toxicity of 5-ring polycyclic aromatic hydrocarbons is differentially dependent on the aryl hydrocarbon receptor 2 isoform during zebrafish development. Toxicol Appl Pharmacol 257:242–249

    Article  CAS  Google Scholar 

  • Kerambrun E, Henry F, Perrichon P, Courcot L, Meziane T, Spilmont N, Amara R (2012) Growth and condition indices of juvenile turbot, Scophthalmus maximus, exposed to contaminated sediments: effects of metallic and organic compounds. Aquat Toxicol 108:130–140

    Article  CAS  Google Scholar 

  • Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310

    Article  CAS  Google Scholar 

  • Kokel D, Bryan J, Laggner C, White R, Cheung CYJ, Mateus R, Healey D, Kim S, Werdich AA, Haggarty SJ, Macrae CA, Shoichet B, Peterson RT (2010) Rapid behavior-based identification of neuroactive small molecules in the zebrafish. Nat Chem Biol 6:231–237

    Article  CAS  Google Scholar 

  • Kosmehl T, Hallare AV, Reifferscheid G, Manz W, Braunbeck T, Hollert H (2006) A novel contact assay for testing genotoxicity of chemicals and whole sediments in zebrafish embryos. Environ Toxicol Chem 25:2097–2106

    Article  CAS  Google Scholar 

  • Köthe H (2003) Existing sediment management guidelines: an overview what will happen with the sediment / dredged material? J Soils Sediments 3:139–143

    Article  Google Scholar 

  • Lammer E, Carr GJ, Wendler K, Rawlings JM, Belanger SE, Braunbeck T (2009) Is the fish embryo toxicity test (FET) with the zebrafish (Danio rerio) a potential alternative for the fish acute toxicity test? Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 149:196–209

    Article  CAS  Google Scholar 

  • Laor Y, Farmer WJ, Aochi Y, Strom PF (1998) Phenanthrene binding and sorption to dissolved and to mineral-associated humic acid. Water Res 32:1923–1931

    Article  CAS  Google Scholar 

  • Larcher T, Perrichon P, Vignet C, Ledevin M, Le Menach K, Lyphout L, Landi L, Clerandeau C, Le Bihanic F, Ménard D, Burgeot T, Akcha F, Cachot J, Cousin X (2014) Carcinogenic but no genotoxic effects detected following chronic trophic exposure of zebrafish to 3 fractions of polycyclic aromatic hydrocarbons (PAHs). Environ Sci Pollut Res. doi:10.1007/s11356-014-2923-7

    Google Scholar 

  • Lawrence C (2007) The husbandry of zebrafish (Danio rerio): a review. Aquaculture 269:1–20

    Article  Google Scholar 

  • Le Bihanic F, Perrichon P, Landi L, Clérandeau C, Le Menach K, Budzinski H, Cousin X, Cachot J (2014a) Development of a reference artificial sediment for chemical testing adapted to the MELA sediment contact assay. Environ Sci Pollut Res. doi:10.1007/s11356-014-2607-3

    Google Scholar 

  • Le Bihanic F, Clérandeau C, Le Menach K, Morin B, Budzinski H, Cousin X, Cachot J (2014b) Developmental toxicity of PAH mixtures in fish early life stages. Part II: adverse effects in Japanese medaka. Environ Sci Pollut Res. doi:10.1007/s11356-014-2676-3

    Google Scholar 

  • Linney E, Upchurch L, Donerly S (2004) Zebrafish as a neurotoxicological model. Neurotoxicol Teratol 26:709–718

    Article  CAS  Google Scholar 

  • MacPhail RC, Brooks J, Hunter DL, Padnos B, Irons TD, Padilla S (2009) Locomotion in larval zebrafish: influence of time of day, lighting and ethanol. Neurotoxicology 30:52–58

    Article  CAS  Google Scholar 

  • Matson CW, Timme-Laragy AR, Di Giulio RT (2008) Fluoranthene, but not benzo[a]pyrene, interacts with hypoxia resulting in pericardial effusion and lordosis in developing zebrafish. Chemosphere 74:149–154

    Article  CAS  Google Scholar 

  • Mayer P, Fernqvist MM, Christensen PS, Karlson U, Trapp S (2007) Enhanced diffusion of polycyclic aromatic hydrocarbons in artificial and natural aqueous solutions. Environ Sci Technol 41:6148–6155

    Article  CAS  Google Scholar 

  • Meador JP, Stein JE, Reichert WL, Varanasi U (1995) Bioaccumulation of polycyclic aromatic hydrocarbons by marine organisms. Rev Environ Contam Toxicol 143:79–165

    CAS  Google Scholar 

  • Nagel R (2002) DarT: the embryo test with the zebrafish Danio rerio—a general model in ecotoxicology and toxicology. Altex 19:38–48

    Google Scholar 

  • Noury P, Geffard O, Tutundjian R, Garric J, Ecotoxicologie L (2006) Non destructive in vivo measurement of ethoxyresorufin biotransformation by zebrafish prolarva: development and application. Environ Toxicol 324–331

  • OECD (1998) Guidelines for the testing chemicals, section 2: effects on biotic systems, test no. 212: fish, short-term toxicity test on embryo and sac-fry stages. 1–20

  • OECD (2004) Guidelines for the testing chemicals, section 2: effects on biotic systems, test no. 218: sediment-water chironomid toxicity test using spiked sediment. 1–21

  • OECD (2013a) Guidelines for the testing chemicals, section 2: effects on biotic systems, test no. 210: fish, early-life stage toxicity test. 1–18

  • OECD (2013b) Guidelines for the testing chemicals, section 2: effects on biotic systems, test no. 236: fish, embryo acute toxicity (FET) Test. 1–22

  • Otte JC, Schmidt AD, Hollert H, Braunbeck T (2010) Spatio-temporal development of CYP1 activity in early life-stages of zebrafish (Danio rerio). Aquat Toxicol 100:38–50

    Article  CAS  Google Scholar 

  • Padilla S, Cowden J, Hinton DE, Yuen B, Law S, Kullman SW, Johnson R, Hardman RC, Flynn K, Au DWT (2009) Use of medaka in toxicity testing. Curr Protoc Toxicol pp 1–36

  • Padilla S, Hunter DL, Padnos B, Frady S, MacPhail RC (2011) Assessing locomotor activity in larval zebrafish: influence of extrinsic and intrinsic variables. Neurotoxicol Teratol 33:624–630

    Article  CAS  Google Scholar 

  • Patel MR, Scheffler BE, Wang L, Willett KL (2006) Effects of benzo(a)pyrene exposure on killifish (Fundulus heteroclitus) aromatase activities and mRNA. Aquat Toxicol 77:267–278

    Article  CAS  Google Scholar 

  • Péan S, Daouk T, Vignet C, Lyphout L, Leguay D, Loizeau V, Bégout M-L, Cousin X (2013) Long-term dietary-exposure to non-coplanar PCBs induces behavioral disruptions in adult zebrafish and their offspring. Neurotoxicol Teratol 39:45–56

    Article  Google Scholar 

  • Rihel J, Prober D, Arvanites A, Lam K, Zimmerman S, Jang S, Haggarty SJ, Kokel D, Rubin LL, Peterson RT, Schier AF (2010) Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation. Science 327:348–351

    Article  CAS  Google Scholar 

  • Russell WMS, Burch RL (1959) The principles of humane experimental technique. 1–5

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  Google Scholar 

  • Scholz S, Sela E, Blaha L, Braunbeck T, Galay-Burgos M, García-Franco M, Guinea J, Klüver N, Schirmer K, Tanneberger K, Tobor-Kapłon M, Witters H, Belanger S, Benfenati E, Creton S, Cronin MTD, Eggen RIL, Embry M, Ekman D, Gourmelon A, Halder M, Hardy B, Hartung T, Hubesch B, Jungmann D, Lampi MA, Lee L, Léonard M, Küster E, Lillicrap A, Luckenbach T, Murk AJ, Navas JM, Peijnenburg W, Repetto G, Salinas E, Schüürmann G, Spielmann H, Tollefsen KE, Walter-Rohde S, Whale G, Wheeler JR, Winter MJ (2013) A European perspective on alternatives to animal testing for environmental hazard identification and risk assessment. Regul Toxicol Pharmacol 67:506–530. doi:10.1016/j.yrtph.2013.10.003

    Article  Google Scholar 

  • Scott J, Incardona JP, Pelkki K, Shepardson S, Hodson PV (2011) AhR2-mediated, CYP1A-independent cardiovascular toxicity in zebrafish (Danio rerio) embryos exposed to retene. Aquat Toxicol 101:165–174

    Article  CAS  Google Scholar 

  • Shen H, Huang Y, Wang R, Zhu D, Li W, Shen G, Wang B, Zhang Y, Chen Y, Lu Y, Chen H, Li T, Sun K, Li B, Liu W, Liu J, Tao S (2013) Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions. Environ Sci Technol 47:6415–6424

    Google Scholar 

  • Spitsbergen J, Kent M (2003) The state of the art of the zebrafish model for toxicology and toxicologic pathology research—advantages and current limitations. Toxicol Pathol 31:62–87

    CAS  Google Scholar 

  • Strähle U, Scholz S, Geisler R, Greiner P, Hollert H, Rastegar S, Schumacher A, Selderslaghs I, Weiss C, Witters H, Braunbeck T (2012) Zebrafish embryos as an alternative to animal experiments—a commentary on the definition of the onset of protected life stages in animal welfare regulations. Reprod Toxicol 33:128–132

    Article  Google Scholar 

  • Usenko CY, Robinson EM, Usenko S, Brooks BW, Bruce ED (2011) PBDE developmental effects on embryonic zebrafish. Environ Toxicol Chem 30:1865–1872

    Article  CAS  Google Scholar 

  • van der Jagt K, Munn S, Torslov J, de Bruijn J (2004) Alternative approaches can reduce the use of test animals under REACH. Addendum to the report of the European Commission: assessment of additional testing needs under REACH effects of(Q)SARS, risk based testing and voluntary industry initiatives. 1–85

  • van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149

    Article  Google Scholar 

  • Van Tiem LA, Di Giulio RT (2011) AHR2 knockdown prevents PAH-mediated cardiac toxicity and XRE- and ARE-associated gene induction in zebrafish (Danio rerio). Toxicol Appl Pharmacol 254:280–287

    Article  Google Scholar 

  • Varanasi U, Reichert WL, Stein JE, Brown DW, Sanborn HR (1985) Bioavailability and biotransformation of aromatic hydrocarbons in benthic organisms exposed to sediment from an urban estuary. Environ Sci Technol 19:836–841

    Article  CAS  Google Scholar 

  • Vicquelin L (2011) Caractérisation fine de la toxicité des hydrocarbures aromatiques polycycliques vis-à-vis des embryons et des larves de medaka japonais, Oryzias latipes. Contribution à l’évaluation des risques environnementaux associés à la pollution chimique des sédiments de l’estuaire de Seine. Ph D. thesis (in french), 319 pages

  • Vicquelin L, Leray-Forget J, Peluhet L, LeMenach K, Deflandre B, Anschutz P, Etcheber H, Morin B, Budzinski H, Cachot J (2011) A new spiked sediment assay using embryos of the Japanese medaka specifically designed for a reliable toxicity assessment of hydrophobic chemicals. Aquat Toxicol 105:235–245

    Article  CAS  Google Scholar 

  • Voelker D, Vess C, Tillmann M, Nagel R, Otto GW, Geisler R, Schirmer K, Scholz S (2007) Differential gene expression as a toxicant-sensitive endpoint in zebrafish embryos and larvae. Aquat Toxicol 81:355–364

    Article  CAS  Google Scholar 

  • Wassenberg DM, Di Giulio RT (2004) Synergistic embryotoxicity of polycyclic aromatic hydrocarbon aryl hydrocarbon receptor agonists with cytochrome P4501A inhibitors in Fundulus heteroclitus. Environ Health Perspect 112:1658–1664

    Article  CAS  Google Scholar 

  • Wessel N, Ollivier H, Le Goff J, Burgeot T (2010) The toxicity of benzo[a]pyrene on sole (Solea solea) hepatocytes: assessment of genotoxic and enzymatic effects. Polycycl Aromat Compd 30:346–354

    CAS  Google Scholar 

  • Wessel N, Ménard D, Pichavant-Rafini K, Ollivier H, Le Goff J, Burgeot T, Akcha F (2012) Genotoxic and enzymatic effects of fluoranthene in microsomes and freshly isolated hepatocytes from sole (Solea solea). Aquat Toxicol 108:33–41

    Article  CAS  Google Scholar 

  • Willett KL, Randerath K, Zhou GD, Safe SH (1998) Inhibition of CYP1A1-dependent activity by the polynuclear aromatic hydrocarbon (PAH) fluoranthene. Biochem Pharmacol 55:831–839

    Article  CAS  Google Scholar 

  • Willett KL, Wassenberg D, Lienesch L, Reichert W, Di Giulio RT (2001) In vivo and in vitro inhibition of CYP1A-dependent activity in Fundulus heteroclitus by the polynuclear aromatic hydrocarbon fluoranthene. Toxicol Appl Pharmacol 177:264–271

    Article  CAS  Google Scholar 

  • Wölz J, Cofalla C, Hudjetz S, Roger S, Brinkmann M, Schmidt B, Schäffer A, Kammann U, Lennartz G, Hecker M, Schüttrumpf H, Hollert H (2009) In search for the ecological and toxicological relevance of sediment re-mobilisation and transport during flood events. J Soils Sediments 9:1–5

    Article  Google Scholar 

Download references

Acknowledgments

Financial support for PhD grants was received by FLB from the Ministère de l’Enseignement de Supérieur et de la Recherche and by PP from both the Conseil Général de Charente Maritime and the Institut Français de Recherche pour l’Exploitation de la Mer (Ifremer). This research was supported by the French Agence Nationale pour la Recherche, program “Contaminant, Ecosystème et Santé,” within the framework of the ConPhyPoP (2009-002) research project and CPER A2E. This project is co-financed by the European Union with the European Regional Development Fund. S. Keiter and H. Zielke are acknowledged for their recommendation on sediment preparation and the Sibelco Company for generously providing sand. D. Leguay is acknowledged for the technical support of zebrafish behavioral assays and L. Lyphout for the help in the zebrafish breeding maintenance. This research was part of the LABEX COTE cluster of excellence “continental to coastal ecosystems.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prescilla Perrichon.

Additional information

Responsible editor: Cinta Porte

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. 1 Supplementary data

Experimental design of zebrafish and medaka embryo-larval assays (PPTX 74 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perrichon, P., Le Bihanic, F., Bustamante, P. et al. Influence of sediment composition on PAH toxicity using zebrafish (Danio rerio) and Japanese medaka (Oryzias latipes) embryo-larval assays. Environ Sci Pollut Res 21, 13703–13719 (2014). https://doi.org/10.1007/s11356-014-3502-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3502-7

Keywords

Navigation