Skip to main content

Advertisement

Log in

Acute toxicity and histopathological effects of naproxen in zebrafish (Danio rerio) early life stages

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Zebrafish (Danio rerio) embryos and larvae were selected to investigate the potential risk and aquatic toxicity of a widely used pharmaceutical, naproxen. The acute toxicity of naproxen to embryos and larvae was measured, respectively. The histopathology was investigated in the liver of zebrafish larvae after 8-day embryo-larvae exposure to naproxen. The values of 96-h LC50 were 115.2 mg/L for embryos and 147.6 mg/L for larvae, indicating that zebrafish embryos were more sensitive than larvae to naproxen exposure. Large suites of symptoms were induced in zebrafish (D. rerio) early life stages by different dosages of naproxen, including hatching inhibition, lower heart rate, and morphological abnormalities. The most sensitive sub-lethal effect caused by naproxen was pericardial edema, the 72-h EC50 values of which for embryos and larvae were 98.3 and 149.0 mg/L, respectively. In addition, naproxen-treated zebrafish larvae exhibited histopathological liver damage, including swollen hepatocytes, vacuolar degeneration, and nuclei pycnosis. The results indicated that naproxen is a potential threat to aquatic organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adhikari PR (2012) Proteomic responses in the gill of zebrafish following exposure to ibuprofen and naproxen. Dissertation, University of North Texas, Texas

  • Alderton W, Berghmans S, Butler P, Chassaing H, Fleming A, Golder Z, Richard F, Gardner I (2010) Accumulation and metabolism of drugs and CYP probe substrates in zebrafish larvae. Xenobiotica 40(8):547–557

    Article  CAS  Google Scholar 

  • Ali S, van Mil HG, Richardson MK (2011) Large-scale assessment of the zebrafish embryo as a possible predictive model in toxicity testing. PLoS One 6:e21076

    Article  CAS  Google Scholar 

  • Allende ML, Amsterdam A, Becker T, Kawakami K, Gaiano N, Hopkins N (1996) Insertional mutagenesis in zebrafish identifies two novel genes, pescadillo and dead eye, essential for embryonic development. Gene dev 10(24):3141–3155

    Article  CAS  Google Scholar 

  • Amali AA, Rekha RD, Lin CJ, Wang WL, Gong HY, Her GM, Wu JL (2006) Thioacetamide induced liver damage in zebrafish embryo as a disease model for steatohepatitis. J Biomed Sci 13(2):225–232

    Article  CAS  Google Scholar 

  • Bhainsa KC, D’Souza SF (2008) Removal of copper ions by the filamentous fungus, Rhizopus oryzae from aqueous solution. Bioresource Technol 99:3829–3835

    Article  CAS  Google Scholar 

  • Braunbeck T, Böttcher M, Hollert H, Kosmehl T, Lammer E, Leist E, Rudolf M, Seitz N (2005) Towards an alternative for the acute fish LC50 test in chemical assessment: the fish embryo toxicity test goes multi-species—an update. Altex 22(2):87–102

    Google Scholar 

  • Braunbeck T, Kais B, Lammer E, Otte J, Schneider K, Stengel D, Strecker R (2015) The fish embryo test (FET): origin, applications, and future. Environ Sci Pollut Res 22(21):16247–16261

    Article  CAS  Google Scholar 

  • Cha YI, Kim SH, Solnica-Krezel L, Dubois RN (2005) Cyclooxygenase-1 signaling is required for vascular tube formation during development. Dev Biol 282:274–283

    Article  CAS  Google Scholar 

  • Cha YI, Solnica-Krezel L, DuBois RN (2006) Fishing for prostanoids: deciphering the developmental functions of cyclooxygenase-derived prostaglandins. Dev Biol 289:263–272

    Article  CAS  Google Scholar 

  • Cleuvers M (2003) Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicol Lett 142(3):185–194

    Article  CAS  Google Scholar 

  • Cleuvers M (2004) Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen, and acetylsalicylic acid. Ecotox Environ Safe 59:309–315

    Article  CAS  Google Scholar 

  • Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Persp 107(Suppl 6):907–938

    Article  CAS  Google Scholar 

  • David A, Pancharatna K (2009) Developmental anomalies induced by a non-selective COX inhibitor (ibuprofen) in zebrafish (Danio rerio). Environ Toxicol and Phar 27:390–395

    Article  CAS  Google Scholar 

  • Di Paolo C, Seiler TB, Keiter S, Hu M, Muz M, Brack W, Hollert H (2015) The value of zebrafish as an integrative model in effect-directed analysis—a review. Environ Sci Eur 27(1):8

    Article  Google Scholar 

  • Driessen M, Kienhuis AS, Pennings JLA, Pronk TE, van de Brandhof EJ, Roodbergen M, Spaink HP, van de Water B, van der Ven LTM (2013) Exploring the zebrafish embryo as an alternative model for the evaluation of liver toxicity by histopathology and expression profiling. Arch Toxicol 87:807–823

    Article  CAS  Google Scholar 

  • EI-Bassat RA, Touliabah HE, Harisa GI (2012) Toxicity of four pharmaceuticals from different classes to isolated plankton species. Afr J Aquat Sci 37:71–80

    Article  Google Scholar 

  • Embry MR, Belanger SE, Braunbeck TA, Galay-Burgos M, Halder M, Hinton DE, Léonard MA, Lillicrap A, Norberg-King T, Whale G (2010) The fish embryo toxicity test as an animal alternative method in hazard and risk assessment and scientific research. Aquat Toxicol 97:79–87

    Article  CAS  Google Scholar 

  • Giari L, Dezfuli BS, Astolfi L, Martini A (2012) Ultrastructural effects of cisplatin on the inner ear and lateral line system of zebrafish (Danio rerio) larvae. J Appl Toxicol 32:293–299

    Article  CAS  Google Scholar 

  • Glickman NS, Yelon D (2002) Cardiac development in zebrafish: coordination of form and function. Seminars in cell & developmental biology. Academic 13:507–513

    Google Scholar 

  • Grenni P, Patrolecco L, Ademollo N, Tolomei A, Caracciolo AB (2013) Degradation of gemfibrozil and naproxen in a river water ecosystem. Microchem J 107:158–164

    Article  CAS  Google Scholar 

  • Grosser T, Yusuff S, Cheskis E, Pack MA, FitzGerald GA (2002) Developmental expression of functional cyclooxygenases in zebrafish. Proc Natl Acad Sci 99:8418–8423

    Article  CAS  Google Scholar 

  • Hallare A, Nagel K, Köhler HR, Triebskorn R (2006) Comparative embryotoxicity and proteotoxicity of three carrier solvents to zebrafish (Danio rerio) embryos. Ecotox Environ Safe 63:378–388

    Article  CAS  Google Scholar 

  • Heberer T (2002) Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol Lett 131:5–17

    Article  CAS  Google Scholar 

  • Hecken A, Schwartz JI, Depré M, Lepeleire I, Dallob A, Tanaka W, Wynants K, Buntinx A, Arnout J, Wong PH, Ebel DL, Gertz BJ, Schepper PJ (2000) Comparative inhibitory activity of rofecoxib, meloxicam, diclofenac, ibuprofen, and naproxen on COX-2 versus COX-1 in healthy volunteers. J Clin Pharmacol 40:1109–1120

    Google Scholar 

  • Hibiya T, Yokote M, Oguri M, Sato H, Takashima F, Aida K (1982) An atlas of fish histology normal and pathological features. Kodansha LTD, Tokyo

    Google Scholar 

  • Huang WF, Hsiao FY, Wen YW, Tsai YW (2006) Cardiovascular events associated with the use of four nonselective NSAIDs (etodolac, nabumetone, ibuprofen, or naproxen) versus a cyclooxygenase-2 inhibitor (celecoxib): a population-based analysis in Taiwanese adults. Clin Ther 28:1827–36

    Article  CAS  Google Scholar 

  • Isidori M, Lavorgna M, Nardelli A, Parrella A, Previtera L, Rubino M (2005) Ecotoxicity of naproxen and its phototransformation products. Sci Total Environ 348:93–101

    Article  CAS  Google Scholar 

  • Jones M, Ball JS, Dodd A, Hill AJ (2009) Comparison between zebrafish and Hep G2 assays for the predictive identification of hepatotoxins. Toxicology 262(1):13–14

    Article  Google Scholar 

  • Kodde IF, van der Stok J, Smolenski RT, Jong JW (2007) Metabolic and genetic regulation of cardiac energy substrate preference. Comp Biochem Physiol A Mol Integr Physiol 146:26–39

    Article  Google Scholar 

  • Kümmerer K (2009) Antibiotics in the environment—a review—part II. Chemosphere 75:435–441

    Article  Google Scholar 

  • Li MH (2013) Acute toxicity of 30 pharmaceutically active compounds to freshwater planarians, Dugesia japonica. Toxico Enviro Chem 95:1157–1170

    Article  CAS  Google Scholar 

  • Li L, Gao HW, Ren JR, Chen L, Li YC, Zhao JF, Zhao HP, Yuan Y (2007) Binding of Sudan II and IV to lecithin liposomes and E. coli membranes: insights into the toxicity of hydrophobic azo dyes. BMC Struct Biol 7:16

    Article  Google Scholar 

  • Nesbitt R (2011) Effects of chronic exposure to ibuprofen and naproxen on Florida flagfish (Jordanella floridae) over one complete life-cycle. Dissertation, University of Ontario Institute of Technology, Ontario

  • OECD (1998) Test No.212: Fish, short-term toxicity test on embryo and sac-fry stages. OECD guidelines for the testing of chemicals, section 2. OECD Publishing, Paris

  • OECD (2013) Test no. 236: fish embryo acute toxicity (FET) test, OECD guidelines for the testing of chemicals, section 2. OECD Publishing, Paris

  • Peng XZ, Yu YY, Tang CM, Tan JH, Huang QX, Wang ZD (2008) Occurrence of steroid estrogens, endocrine-disrupting phenols, and acid pharmaceutical residues in urban riverine water of the Pearl River Delta, South China. Sci Total Environ 397(1):158–166

    Article  CAS  Google Scholar 

  • Prescott SM, Yost HJ (2002) The COXes of Danio: from mechanistic model to experimental therapeutics. Proc Natl Acad Sci 99:9084–9086

    Article  CAS  Google Scholar 

  • Quinn B, Gagné F, Blaise C (2008) An investigation into the acute and chronic toxicity of eleven pharmaceuticals (and their solvents) found in wastewater effluent on the cnidarian, Hydra attenuata. Sci Total Environ 389:306–314

    Article  CAS  Google Scholar 

  • Raldúa D, André M, Babin PJ (2008) Clofibrate and gemfibrozil induce an embryonic malabsorption syndrome in zebrafish. Toxicol Appl Pharm 228:301–314

    Article  Google Scholar 

  • Rodriguez C, Chellman K, Gomez S, Marple L (1992) Environmental assessment report pursuant to 21 CFR 25.31(a) submitted to the US FDA in support of the new drug application (NDA) for naproxen for over-the-counter use. Hamilton Pharmaceuticals Limited, Puerto Rico

    Google Scholar 

  • Santos LHMLM, Araújo AN, Fachini A, Pena A, Delerue-Matos C, Montenegro MCBSM (2010) Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J Hazard Mater 175(1):45–95

    Article  CAS  Google Scholar 

  • Stancová V, Ziková A, Svobodová Z, Kloas W (2015) Effects of the non-steroidal anti-inflammatory drug (NSAID) naproxen on gene expression of antioxidant enzymes in zebrafish (Danio rerio). Environ Toxicol Phar 40:343–348

    Article  Google Scholar 

  • Strähle U, Scholz S, Geisler R, Greiner P, Hollert H, Rastegar S, Schumacher A, Selderslaghs I, Weiss C, Witters H, Braunbeck T (2012) Zebrafish embryos as an alternative to animal experiments—a commentary on the definition of the onset of protected life stages in animal welfare regulations. Reprod Toxicol 33:128–32

    Article  Google Scholar 

  • Ternes TA (1998) Occurrence of drugs in German sewage treatments plants and rivers. Water Res 32:3245–3260

    Article  CAS  Google Scholar 

  • Tixier C, Singer H, Oellers S, Muller S (2003) Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen and naproxen in surface waters. Environ Sci Technol 37:1061–1068

    Article  CAS  Google Scholar 

  • Ton SS, Chang SH, Hsu LY, Wang MH, Wang KS (2012) Evaluation of acute toxicity and teratogenic effects of disinfectants by Daphnia magna embryo assay. Environ Pollut 168:54–61

    Article  CAS  Google Scholar 

  • Treinen-Moslen M (2001) Toxic responses of the liver. In: Klaasen CD (ed) Casarett and Doull’s toxicology. McGraw-Hill, New York, pp 471–489

    Google Scholar 

  • Triebskorn R, Casper H, Heyd A, Eikemper R, Köhler HR, Schwaiger J (2004) Toxic effects of the non-steroidal anti-inflammatory drug diclofenac: part II. Cytological effects in liver, kidney, gills and intestine of rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 68:151–166

    Article  CAS  Google Scholar 

  • Wang L, Ying GG, Zhao JL, Yang XB, Chen F, Tao R, Liu S, Zhou LJ (2010) Occurrence and risk assessment of acidic pharmaceuticals in the Yellow River, Hai River and Liao River of north China. Sci Total Environ 408:3139–3147

    Article  CAS  Google Scholar 

  • Wernersson AS, Carere M, Maggi C et al (2015) The European technical report on aquatic effect-based monitoring tools under the water framework directive. Environ Sci Eur 27(1):1–11

    Article  CAS  Google Scholar 

  • Wiegel S, Aulinger A, Brockmeyer R, Harms H, Loffler J, Reincke H, Schmidt R, Stachel B, Von Tumpling W, Wanke A (2004) Pharmaceuticals in the River Elbe and its tributaries. Chemosphere 57:107–126

    Article  CAS  Google Scholar 

  • Yan GY, Viraraghavan T (2003) Heavy-metal removal from aqueous solution by fungus Mucor rouxii. Water Res 37:4486–4496

    Article  CAS  Google Scholar 

  • Zhang L (2003) Marketing analysis of naproxen (in Chinese). China pharmacy 14(6):326–328

    Google Scholar 

  • Zhu B, Liu TQ, Hu XG, Wang GX (2013) Developmental toxicity of 3,4-dichloroaniline on rare minnow (Gobiocypris rarus) embryos and larvae. Chemosphere 90:1132–1139

    Article  CAS  Google Scholar 

  • Zuccato E, Castiglioni S, Fanelli R, Reitano G, Bagnati R, Chiabrando C, Pomati F, Rossetti C, Calamari D (2006) Pharmaceuticals in the environment in Italy: causes, occurrence, effects and control. Environ Sci Pollu Res 13:15–21

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Natural Science Foundation of China (No. 41101499) and the national key technology R&D program of the Ministry of Science and Technology of China (2012BAJ24B01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingling Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Henner Hollert

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Wang, P., Chen, L. et al. Acute toxicity and histopathological effects of naproxen in zebrafish (Danio rerio) early life stages. Environ Sci Pollut Res 23, 18832–18841 (2016). https://doi.org/10.1007/s11356-016-7092-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7092-4

Keywords

Navigation