Skip to main content

Advertisement

Log in

Feasibility of biochar application on a landfill final cover—a review on balancing ecology and shallow slope stability

  • Biological waste as resource, with a focus on food waste
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Due to the increasing concerns on global warming, scarce land for agriculture, and contamination impacts on human health, biochar application is being considered as one of the possible measures for carbon sequestration, promoting higher crop yield and contamination remediation. Significant amount of researches focusing on these three aspects have been conducted during recent years. Biochar as a soil amendment is effective in promoting plant performance and sustainability, by enhancing nutrient bioavailability, contaminants immobilization, and microbial activities. The features of biochar in changing soil physical and biochemical properties are essential in affecting the sustainability of an ecosystem. Most studies showed positive results and considered biochar application as an effective and promising measure for above-mentioned interests. Bio-engineered man-made filled slope and landfill slope increasingly draw the attention of geologists and geotechnical engineers. With increasing number of filled slopes, sustainability, low maintenance, and stability are the major concerns. Biochar as a soil amendment changes the key factors and parameters in ecology (plant development, soil microbial community, nutrient/contaminant cycling, etc.) and slope engineering (soil weight, internal friction angle and cohesion, etc.). This paper reviews the studies on the production, physical and biochemical properties of biochar and suggests the potential areas requiring study in balancing ecology and man-made filled slope and landfill cover engineering. Biochar-amended soil should be considered as a new type of soil in terms of soil mechanics. Biochar performance depends on soil and biochar type which imposes challenges to generalize the research outcomes. Aging process and ecotoxicity studies of biochar are strongly required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abel S, Peters A, Trinks S, Schonsky H, Facklam M, Wessolek G (2013) Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 202–203:183–191

    Article  Google Scholar 

  • Ahmad M, Lee SS, Dou X, Mohan D, Sung J-K, Yang JE, Ok YS (2012) Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour Technol 118:536–544

    Article  CAS  Google Scholar 

  • Ahmad M, Lee SS, Oh SE, Mohan D, Moon DH, Lee YH, Ok YS (2013) Modeling adsorption kinetics of trichloroethylene onto biochars derived from soybean stover and peanut shell wastes. Environ Sci Pollut Res 20:8364–8373

    Article  CAS  Google Scholar 

  • Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS (2014) Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 99:19–33

    Article  CAS  Google Scholar 

  • Anderson CR, Condron LM, Clough TJ, Fiers M, Stewart A, Hill RA, Sherlock RR (2011) Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia 54:309–320

    Article  CAS  Google Scholar 

  • Anjum R, Krakat N, Toufiq Reza M, Klocke M (2014) Assessment of mutagenic potential of pyrolysis biochars by Ames Salmonella/mammalian-microsomal mutagenicity test. Ecotoxicol Environ Saf 107:306–312

    Article  CAS  Google Scholar 

  • Atkinson CJ, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337:1–18

    Article  CAS  Google Scholar 

  • Baronti S, Vaccari FP, Miglietta F, Calzolari C, Lugato E, Orlandini S, Pini R, Zulian C, Genesio L (2014) Impact of biochar application on plant water relations in Vitis vinifera (L.). Eur J Agron 53:38–44

    Article  CAS  Google Scholar 

  • Barrow CJ (2012) Biochar: potential for countering land degradation and for improving agriculture. Appl Geogr 34:21–28

    Article  Google Scholar 

  • Bastos AC, Prodana M, Abrantes N, Keizer JJ, Soares AMVM, Loureiro S (2014) Potential risk of biochar-amended soil to aquatic systems: an evaluation based on aquatic bioassays. Ecotoxicology 23:1784–1793

    Article  CAS  Google Scholar 

  • Beesley L, Marmiroli M (2011) The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environ Pollut 159:474–480

    Article  CAS  Google Scholar 

  • Beesley L, Marmiroli M, Pagano L, Pigoni V, Fellet G, Fresno T, Vamerali T, Bandiera M, Marmiroli N (2013) Biochar addition to an arsenic contaminated soil increases arsenic concentrations in the pore water but reduces uptake to tomato plants (Solanum lycopersicum L.). Sci Total Environ 454–455:598–603

    Article  CAS  Google Scholar 

  • Bhandari PN, Kumar A, Huhnke RL (2013) Simultaneous removal of toluene (model tar), NH3, and H2S, from biomass-generated producer gas using biochar-based and mixed-metal oxide catalysts. Energy Fuels 28:1918–1925

    Article  CAS  Google Scholar 

  • Bogner J, Meadows M, Czepiel P (1997) Fluxes of methane between landfills and the atmosphere: natural and engineered controls. Soil Use Manag 13:268–277

    Article  Google Scholar 

  • Brodowski SB (2004) Origin, function, and reactivity of black carbon in the arable soil environment. PhD Thesis, University of Bayreuth

  • Bolan NS, Kunhikrishnan A, Naidu R (2013) Carbon storage in a heavy clay soil landfill site after biosolid application. Sci Total Environ 465:216–225

  • Buss W, Mašek O (2014) Mobile organic compounds in biochar—a potential source of contamination—phytotoxic effects on cress seed (Lepidium sativum) germination. J Environ Manag 137:111–119

    Article  CAS  Google Scholar 

  • Camerini G, Groppali R (2014) Landfill restoration and biodiversity: a case of study in Northern Italy. Waste Manag Res 32:782–790

    Article  Google Scholar 

  • Cao CTN, Farrell C, Kristiansen PE, Rayner JP (2014) Biochar makes green roof substrates lighter and improves water supply to plants. Ecol Eng 71:368–374

    Article  Google Scholar 

  • Castaldi S, Riondino M, Baronti S, Esposito FR, Marzaioli R, Rutigliano FA, Vaccari FP, Miglietta F (2011) Impact of biochar application to a Mediterranean wheat crop on soil microbial activity and greenhouse gas fluxes. Chemosphere 85:1464–1471

    Article  CAS  Google Scholar 

  • Cayuela ML, Sánchez-Monedero MA, Roig A, Hanley K, Enders A, Lehmann J (2013) Biochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions? Sci Rep. doi:10.1038/srep01732

    Google Scholar 

  • Chen B, Yuan M, Qian L (2012) Enhanced bioremediation of PAH-contaminated soil by immobilized bacteria with plant residue and biochar as carriers. J Soils Sediments 12:1350–1359

    Article  CAS  Google Scholar 

  • Chen J, Liu X, Zheng J, Zhang B, Lu H, Chi Z, Pan G, Li L, Zheng J, Zhang X, Wang J, Yu X (2013) Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China. Appl Soil Ecol 71:33–44

    Article  Google Scholar 

  • Chen X-W, Wong JT-F, Mo W-Y, Man Y-B, Ng CW-W, Wong M-H (2015) Ecological performance of the restored South East New Territories (SENT) landfill in Hong Kong (2000–2012). Land Degrad Dev. doi:10.1002/ldr.2366

    Google Scholar 

  • Cheng C-H, Lehmann J, Thies JE, Burton SD, Engelhard MH (2006) Oxidation of black carbon by biotic and abiotic processes. Org Geochem 37:1477–1488

    Article  CAS  Google Scholar 

  • Costanza R, Mageau M (1999) What is a healthy ecosystem? Aquat Ecol 33:105–115

    Article  Google Scholar 

  • Crane-Droesch A, Abiven S, Jeffery S, Torn MS (2013) Heterogeneous global crop yield response to biochar: a meta-regression analysis. Environ Res Lett 8:044049

    Article  Google Scholar 

  • Cross A, Sohi SP (2011) The priming potential of biochar products in relation to labile carbon contents and soil organic matter status. Soil Biol Biochem 43:2127–2134

    Article  CAS  Google Scholar 

  • Cui HJ, Wang MK, Fu ML, Ci E (2011) Enhancing phosphorus availability in phosphorus-fertilized zones by reducing phosphate adsorbed on ferrihydrite using rice straw-derived biochar. J Soils Sediments 11:1135–1141

    Article  CAS  Google Scholar 

  • Dempster DN, Gleeson DB, Solaiman ZM, Jones DL, Murphy DV (2012) Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil. Plant Soil 354:311–324

    Article  CAS  Google Scholar 

  • Denyes MJ, Langlois VS, Rutter A, Zeeb BA (2012) The use of biochar to reduce soil PCB bioavailability to Cucurbita pepo and Eisenia fetida. Sci Total Environ 437:76–82

    Article  CAS  Google Scholar 

  • Ding Y, Liu YX, Wu WX, Shi DZ, Yang M, Zhong ZK (2010) Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns. Water Air Soil Pollut 213:47–55

    Article  CAS  Google Scholar 

  • Domene X, Mattana S, Hanley K, Enders A, Lehmann J (2014) Medium-term effects of corn biochar addition on soil biota activities and functions in a temperate soil cropped to corn. Soil Biol Biochem 72:152–162

    Article  CAS  Google Scholar 

  • Ducey TF, Ippolito JA, Cantrell KB, Novak JM, Lentz RD (2013) Addition of activated switchgrass biochar to an aridic subsoil increases microbial nitrogen cycling gene abundances. Appl Soil Ecol 65:65–72

    Article  Google Scholar 

  • Eid H, Stark T, Evans W, Sherry P (2000) Municipal solid waste slope failure. I: waste and foundation soil properties. J Geotech Geoenviron Eng 126:397–407

    Article  Google Scholar 

  • Fang Q, Chen B, Lin Y, Guan Y (2013) Aromatic and hydrophobic surfaces of wood-derived biochar enhance perchlorate adsorption via hydrogen bonding to oxygen-containing organic groups. Environ Sci Technol 48:279–288

    Article  CAS  Google Scholar 

  • Fellet G, Marchiol L, Delle Vedove G, Peressotti A (2011) Application of biochar on mine tailings: effects and perspectives for land reclamation. Chemosphere 83:1262–1267

    Article  CAS  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631

    Article  CAS  Google Scholar 

  • Fredlund DG, Rahardjo H (1993) Soil Mechanics for Unsaturated Soils, 1st edn. Wiley-Interscience, New York

    Book  Google Scholar 

  • Fulton W, Gray M, Prahl F, Kleber M (2013) A simple technique to eliminate ethylene emissions from biochar amendment in agriculture. Agron Sustain Dev 33:469–474

    Article  CAS  Google Scholar 

  • Fungo B, Guerena D, Thiongo M, Lehmann J, Neufeldt H, Kalbitz K (2014) N2O and CH4 emission from soil amended with steam-activated biochar. J Plant Nutr Soil Sci 177:34–38

    Article  CAS  Google Scholar 

  • Gaunt JL, Lehmann J (2008) Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production. Environ Sci Technol 42:4152–4158

    Article  CAS  Google Scholar 

  • Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review. Biol Fertil Soils 35:219–230

    Article  CAS  Google Scholar 

  • Graber ER, Tsechansky L, Gerstl Z, Lew B (2011) High surface area biochar negatively impacts herbicide efficacy. Plant Soil 353:95–106

    Article  CAS  Google Scholar 

  • Gurwick NP, Moore LA, Kelly C, Elias P (2013) A systematic review of biochar research, with a focus on its stability in situ and its promise as a climate mitigation strategy. PLoS ONE 8, e75932

    Article  CAS  Google Scholar 

  • Hale SE, Lehmann J, Rutherford D, Zimmerman AR, Bachmann RT, Shitumbanuma V, O’Toole A, Sundqvist KL, Arp HPH, Cornelissen G (2012) Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars. Environ Sci Technol 46:2830–2838

    Article  CAS  Google Scholar 

  • Hale SE, Jensen J, Jakob L, Oleszczuk P, Hartnik T, Henriksen T, Okkenhaug G, Martinsen V, Cornelissen G (2013) Short-term effect of the soil amendments activated carbon, biochar, and ferric oxyhydroxide on bacteria and invertebrates. Environ Sci Technol 47:8674–8683

    CAS  Google Scholar 

  • Hamer U, Marschner B, Brodowski S, Amelung W (2004) Interactive priming of black carbon and glucose mineralisation. Org Geochem 35:823–830

    Article  CAS  Google Scholar 

  • Hammes K, Torn MS, Lapenas AG, Schmidt MWI (2008) Centennial black carbon turnover observed in a Russian steppe soil. Biogeosciences 5:1339–1350

    Article  CAS  Google Scholar 

  • Hammond J, Shackley S, Sohi S, Brownsort P (2011) Prospective life cycle carbon abatement for pyrolysis biochar systems in the UK. Energy Policy 39:2646–2655

    Article  CAS  Google Scholar 

  • Haque A, Tang C, Islam S, Ranjith P, Bui H (2014) Biochar sequestration in lime-slag treated synthetic soils: a green approach to ground improvement. J Mater Civ Eng :06014024

  • Hockaday W (2006) The organic geochemistry of charcoal black carbon in the soils of the University of Michigan Biological Station. PhD Thesis, The Ohio State University

  • Hurst C, Longhurst P, Pollard S, Smith R, Jefferson B, Gronow J (2005) Assessment of municipal waste compost as a daily cover material for odour control at landfill sites. Environ Pollut 135:171–177

    Article  CAS  Google Scholar 

  • Ibarrola R, Shackley S, Hammond J (2012) Pyrolysis biochar systems for recovering biodegradable materials: a life cycle carbon assessment. Waste Manag 32:859–868

    Article  CAS  Google Scholar 

  • Ippolito JA, Ducey TF, Cantrell KB, Novak JM, Lentz RD (2015) Designer, acidic biochar influences calcareous soil characteristics. Chemosphere. doi:10.1016/j.chemosphere.2015.05.092

    Google Scholar 

  • Jaafar NM (2014) Biochar as a habitat for arbuscular mycorrhizal fungi. In: Solaiman ZM, Abbott LK, Varma A (eds) Mycorrhizal Fungi Use Sustain. Agric. Land Restor. Springer Berlin Heidelberg, pp 297–311

  • Jain S, Baruah BP, Khare P (2014) Kinetic leaching of high sulphur mine rejects amended with biochar: buffering implication. Ecol Eng 71:703–709

    Article  Google Scholar 

  • Jeffery S, Verheijen FGA, van der Velde M, Bastos AC (2011) A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric Ecosyst Environ 144:175–187

    Article  Google Scholar 

  • Jeffries P, Barea JM (2001) Arbuscular mycorrhiza—a key component of sustainable plant-soil ecosystems. In: Hock PDB (ed) Fungal Assoc. Springer Berlin Heidelberg, pp 95–113

  • Jin H (2010) Characterization of microbial life colonizing biochar and biochar-amended soils. PhD Thesis, Cornell University

  • Joseph S, Graber E, Chia C, Munroe P, Donne S, Thomas T, Nielsen S, Marjo C, Rutlidge H, Pan G, Li L, Taylor P, Rawal A, Hook J (2013) Shifting paradigms: development of high-efficiency biochar fertilizers based on nano-structures and soluble components. Carbon Manag 4:323–343

    Article  CAS  Google Scholar 

  • Karami N, Clemente R, Moreno-Jiménez E, Lepp NW, Beesley L (2011) Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J Hazard Mater 191:41–48

    Article  CAS  Google Scholar 

  • Karhu K, Mattila T, Bergström I, Regina K (2011) Biochar addition to agricultural soil increased CH4 uptake and water holding capacity—results from a short-term pilot field study. Agric Ecosyst Environ 140:309–313

    Article  CAS  Google Scholar 

  • Keiluweit M, Nico PS, Johnson MG, Kleber M (2010) Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol 44:1247–1253

    Article  CAS  Google Scholar 

  • Keiluweit M, Kleber M, Sparrow MA, Simoneit BRT, Prahl FG (2012) Solvent-extractable polycyclic aromatic hydrocarbons in biochar: influence of pyrolysis temperature and feedstock. Environ Sci Technol 46:9333–9341

    Article  CAS  Google Scholar 

  • Khan S, Chao C, Waqas M, Arp HPH, Zhu Y-G (2013) Sewage sludge biochar influence upon rice (Oryza sativa L) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil. Environ Sci Technol 47:8624–8632

    Article  CAS  Google Scholar 

  • Kinney TJ, Masiello CA, Dugan B, Hockaday WC, Dean MR, Zygourakis K, Barnes RT (2012) Hydrologic properties of biochars produced at different temperatures. Biomass Bioenergy 41:34–43

    Article  CAS  Google Scholar 

  • Kloss S, Zehetner F, Dellantonio A, Hamid R, Ottner F, Liedtke V, Schwanninger M, Gerzabek MH, Soja G (2012) Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. J Environ Qual 41:990–1000

    Article  CAS  Google Scholar 

  • Koerner RM, Daniel DE (1997) Final covers for solid waste landfills and abandoned dumps. ASCE Press, New York

    Book  Google Scholar 

  • Krause AE, Frank KA, Mason DM, Ulanowicz RE, Taylor WW (2003) Compartments revealed in food-web structure. Nature 426:282–285

    Article  CAS  Google Scholar 

  • Leake JR, Renforth P, Edmondson J, Manning DAC, Gaston KJ (2011) Designing a carbon capture function into urban soils. Proc ICE - Urban Des Plan 164:121–128

    Article  Google Scholar 

  • LeCroy C, Masiello CA, Rudgers JA, Hockaday WC, Silberg JJ (2013) Nitrogen, biochar, and mycorrhizae: alteration of the symbiosis and oxidation of the char surface. Soil Biol Biochem 58:248–254

    Article  CAS  Google Scholar 

  • Lehmann J, Joseph S (2009) Biochar for environmental management: science and technology, 1st ed. Routledge, London ; Sterling, VA

  • Lehmann J, Skjemstad J, Sohi S, Carter J, Barson M, Falloon P, Coleman K, Woodbury P, Krull E (2008) Australian climate–carbon cycle feedback reduced by soil black carbon. Nat Geosci 1:832–835

    Article  CAS  Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota—a review. Soil Biol Biochem 43:1812–1836

    Article  CAS  Google Scholar 

  • Lin Y, Munroe P, Joseph S, Henderson R, Ziolkowski A (2012) Water extractable organic carbon in untreated and chemical treated biochars. Chemosphere 87:151–157

    Article  CAS  Google Scholar 

  • Liu X, Zhang A, Ji C, Joseph S, Bian R, Li L, Pan G, Paz-Ferreiro J (2013) Biochar’s effect on crop productivity and the dependence on experimental conditions—a meta-analysis of literature data. Plant Soil 373:583–594

    Article  CAS  Google Scholar 

  • Marchal G, Smith KEC, Rein A, Winding A, Trapp S, Karlson UG (2013) Comparing the desorption and biodegradation of low concentrations of phenanthrene sorbed to activated carbon, biochar and compost. Chemosphere 90:1767–1778

    Article  CAS  Google Scholar 

  • Marks EAN, Mattana S, Alcañiz JM, Domene X (2014) Biochars provoke diverse soil mesofauna reproductive responses in laboratory bioassays. Eur J Soil Biol 60:104–111

    Article  CAS  Google Scholar 

  • Mašek O, Budarin V, Gronnow M, Crombie K, Brownsort P, Fitzpatrick E, Hurst P (2013) Microwave and slow pyrolysis biochar—comparison of physical and functional properties. J Anal Appl Pyrolysis 100:41–48

    Article  CAS  Google Scholar 

  • McCormack SA, Ostle N, Bardgett RD, Hopkins DW, Vanbergen AJ (2013) Biochar in bioenergy cropping systems: impacts on soil faunal communities and linked ecosystem processes. GCB Bioenergy 5:81–95

    Article  CAS  Google Scholar 

  • Mitchell J, Seed R, Seed H (1990) Kettleman hills waste landfill slope failure. I: Liner‐system properties. J Geotech Eng 116:647–668

    Article  Google Scholar 

  • Mohan D, Sarswat A, Ok YS, Pittman CU Jr (2014) Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—a critical review. Bioresour Technol 160:191–202

    Article  CAS  Google Scholar 

  • Ng CWW, Menzies B (2007) Advanced unsaturated soil mechanics and engineering. Taylor & Francis, London, New York

  • Ng CWW, Zhou C (2014) Cyclic behaviour of an unsaturated silt at various suctions and temperatures. Géotechnique 64:709–720

  • Ng CWW, Leung AK, Woon KX (2013a) Effects of soil density on grass-induced suction distributions in compacted soil subjected to rainfall. Can Geotech J 51:311–321

    Article  Google Scholar 

  • Ng CWW, Woon KX, Leung AK, Chu LM (2013b) Experimental investigation of induced suction distribution in a grass-covered soil. Ecol Eng 52:219–223

    Article  Google Scholar 

  • Oleszczuk P, Jośko I, Kuśmierz M (2013) Biochar properties regarding to contaminants content and ecotoxicological assessment. J Hazard Mater 260:375–382

    Article  CAS  Google Scholar 

  • Ouyang L, Wang F, Tang J, Yu L, Zhang R (2013) Effects of biochar amendment on soil aggregates and hydraulic properties. J Soil Sci Plant Nutr 13:991–1002

    Google Scholar 

  • Palmiotto M, Fattore E, Paiano V, Celeste G, Colombo A, Davoli E (2014) Influence of a municipal solid waste landfill in the surrounding environment: Toxicological risk and odor nuisance effects. Environ Int 68:16–24

    Article  CAS  Google Scholar 

  • Paz-Ferreiro J, Gascó G, Gutiérrez B, Méndez A (2012) Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil. Biol Fertil Soils 48:511–517

    Article  Google Scholar 

  • Pietikäinen J, Kiikkilä O, Fritze H (2000) Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos 89:231–242

    Article  Google Scholar 

  • Pollen N, Simon A (2005) Estimating the mechanical effects of riparian vegetation on stream bank stability using a fiber bundle model. Water Resour Res 41, W07025

    Article  Google Scholar 

  • Preston CM, Schmidt MWI (2006) Black (pyrogenic) carbon: A synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosciences 3:397–420

    Article  CAS  Google Scholar 

  • Quilliam RS, DeLuca TH, Jones DL (2013) Biochar application reduces nodulation but increases nitrogenase activity in clover. Plant Soil 366:83–92

    Article  CAS  Google Scholar 

  • Reddy K, Yargicoglu E, Yue D, Yaghoubi P (2014) Enhanced microbial methane oxidation in landfill cover soil amended with biochar. J Geotech Geoenviron Eng 140:04014047

    Article  CAS  Google Scholar 

  • Reijnders L (2009) Are forestation, bio-char and landfilled biomass adequate offsets for the climate effects of burning fossil fuels? Energy Policy 37:2839–2841

    Article  Google Scholar 

  • Richardson GN, Smith SA, Scheer PK (2008) Active LFG control: an unreliable aid to veneer stability. Geosynth. Mag. URL: http://geosyntheticsmagazine.com/articles/0608_f1_lfg.html:

  • Roberts KG, Gloy BA, Joseph S, Scott NR, Lehmann J (2009) Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential. Environ Sci Technol 44:827–833

    Article  CAS  Google Scholar 

  • Schulz H, Dunst G, Glaser B (2013) Positive effects of composted biochar on plant growth and soil fertility. Agron Sustain Dev 33:817–827

    Article  CAS  Google Scholar 

  • Seed R, Mitchell J, Seed H (1990) Kettleman hills waste landfill slope failure. II: stability analyses. J Geotech Eng 116:669–690

    Article  Google Scholar 

  • Shakesby RA, Doerr SH, Walsh RPD (2000) The erosional impact of soil hydrophobicity: current problems and future research directions. J Hydrol 231–232:178–191

    Article  Google Scholar 

  • Shan J, Wang Y, Gu J, Zhou W, Ji R, Yan X (2014) Effects of biochar and the geophagous earthworm Metaphire guillelmi on fate of 14C-catechol in an agricultural soil. Chemosphere 107:109–114

    Article  CAS  Google Scholar 

  • Shang G, Shen G, Wang T, Chen Q (2012) Effectiveness and mechanisms of hydrogen sulfide adsorption by camphor-derived biochar. J Air Waste Manag Assoc 62:873–879

    Article  CAS  Google Scholar 

  • Shang G, Shen G, Liu L, Chen Q, Xu Z (2013) Kinetics and mechanisms of hydrogen sulfide adsorption by biochars. Bioresour Technol 133:495–499

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal Symbiosis, 3rd edn. Academic, London

    Google Scholar 

  • Song Y, Wang F, Bian Y, Kengara FO, Jia M, Xie Z, Jiang X (2012) Bioavailability assessment of hexachlorobenzene in soil as affected by wheat straw biochar. J Hazard Mater 217–218:391–397

    Article  CAS  Google Scholar 

  • Sopeña F, Semple K, Sohi S, Bending G (2012) Assessing the chemical and biological accessibility of the herbicide isoproturon in soil amended with biochar. Chemosphere 88:77–83

    Article  CAS  Google Scholar 

  • Spokas K, Reicosky D (2009) Impacts of sixteen different biochars on soil greenhouse gas production. Ann Environ Sci 3:179–193

    CAS  Google Scholar 

  • Spokas KA, Koskinen WC, Baker JM, Reicosky DC (2009) Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere 77:574–581

    Article  CAS  Google Scholar 

  • Spokas KA, Baker JM, Reicosky DC (2010) Ethylene: potential key for biochar amendment impacts. Plant Soil 333:443–452

    Article  CAS  Google Scholar 

  • Spokas KA, Novak JM, Venterea RT (2012) Biochar’s role as an alternative N-fertilizer: ammonia capture. Plant Soil 350:35–42

    Article  CAS  Google Scholar 

  • Steinbeiss S, Gleixner G, Antonietti M (2009) Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol Biochem 41:1301–1310

    Article  CAS  Google Scholar 

  • Stokes A, Atger C, Bengough AG, Fourcaud T, Sidle RC (2009) Desirable plant root traits for protecting natural and engineered slopes against landslides. Plant Soil 324:1–30

    Article  CAS  Google Scholar 

  • Taghizadeh-Toosi A, Clough TJ, Sherlock RR, Condron LM (2012) A wood based low-temperature biochar captures NH3-N generated from ruminant urine-N, retaining its bioavailability. Plant Soil 353:73–84

    Article  CAS  Google Scholar 

  • Troy SM, Lawlor PG, O’ Flynn CJ, Healy MG (2013) Impact of biochar addition to soil on greenhouse gas emissions following pig manure application. Soil Biol Biochem 60:173–181

    Article  CAS  Google Scholar 

  • Wang Y, Pan F, Wang G, Zhang G, Wang Y, Chen X, Mao Z (2014) Effects of biochar on photosynthesis and antioxidative system of Malus hupehensis Rehd. seedlings under replant conditions. Sci Hortic 175:9–15

    Article  CAS  Google Scholar 

  • Warnock DD, Lehmann J, Kuyper TW, Rillig MC (2007) Mycorrhizal responses to biochar in soil—concepts and mechanisms. Plant Soil 300:9–20

    Article  CAS  Google Scholar 

  • Wong JT-F, Chen X-W, Mo W-Y, Man Y-B, Ng CW-W, Wong M-H (2015a) Restoration of plant and animal communities in a sanitary landfill: a ten years case study in Hong Kong. Land Degrad Dev. doi:10.1002/ldr.2402

    Google Scholar 

  • Wong JTF, Chen Z, Ng CWW, Wong MH (2015b) Gas permeability of biochar-amended clay: potential alternative landfill final cover material. Environ Sci Pollut Res. doi:10.1007/s11356-015-4871-2

    Google Scholar 

  • Wong MH, Chan YSG, Zhang C, Ng CWW (2015c) Comparison of pioneer and native woodland species growing on top of an engineered landfill, Hong Kong: restoration program. Land Degrad Dev. doi:10.1002/ldr.2380

    Google Scholar 

  • Wu TH (2013) Root reinforcement of soil: review of analytical models, test results, and applications to design. Can Geotech J 50:259–274

    Article  Google Scholar 

  • Wu TH, McKinnell WP III, Swanston DN (1979) Strength of tree roots and landslides on Prince of Wales Island, Alaska. Can Geotech J 16:19–33

    Article  Google Scholar 

  • Xu G, Wei LL, Sun JN, Shao HB, Chang SX (2013) What is more important for enhancing nutrient bioavailability with biochar application into a sandy soil: direct or indirect mechanism? Ecol Eng 52:119–124

    Article  Google Scholar 

  • Xu C-Y, Hosseini-Bai S, Hao Y, Rachaputi RCN, Wang H, Xu Z, Wallace H (2014a) Effect of biochar amendment on yield and photosynthesis of peanut on two types of soils. Environ Sci Pollut Res 22:6112–6125

    Article  CAS  Google Scholar 

  • Xu X, Cao X, Zhao L, Sun T (2014b) Comparison of sewage sludge- and pig manure-derived biochars for hydrogen sulfide removal. Chemosphere 111:296–303

    Article  CAS  Google Scholar 

  • Yaghoubi P (2011) Development of Biochar-Amended Landfill Cover for Landfill Gas Mitigation. PhD Thesis, University of Illinois

  • Yao Y, Gao B, Zhang M, Inyang M, Zimmerman AR (2012) Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 89:1467–1471

    Article  CAS  Google Scholar 

  • Zhang X, Wang H, He L, Lu K, Sarmah A, Li J, Bolan NS, Pei J, Huang H (2013) Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environ Sci Pollut Res 20:8472–8483

    Article  CAS  Google Scholar 

  • Zhao L, Cao X, Mašek O, Zimmerman A (2013) Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. J Hazard Mater 256–257:1–9

    Google Scholar 

  • Zheng H, Wang Z, Deng X, Xing B (2013) Impact of pyrolysis temperature on nutrient properties of biochar. In: Xu J, Wu J, He Y (eds) Funct. Nat. Org. Matter Chang. Environ. Springer Netherlands, pp 975–978

  • Zimmerman AR, Gao B, Ahn M-Y (2011) Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol Biochem 43:1169–1179

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Collaborative Research Fund from the Research Grants Council, Hong Kong SAR (HKUST6/CRF/12R) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Charles Wang-Wai Ng or Ming-Hung Wong.

Additional information

Responsible editor: Hailong Wang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, XW., Wong, J.TF., Ng, C.WW. et al. Feasibility of biochar application on a landfill final cover—a review on balancing ecology and shallow slope stability. Environ Sci Pollut Res 23, 7111–7125 (2016). https://doi.org/10.1007/s11356-015-5520-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5520-5

Keywords

Navigation