Skip to main content

Advertisement

Log in

Desirable plant root traits for protecting natural and engineered slopes against landslides

  • Marschner Review
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Slope stability models traditionally use simple indicators of root system structure and strength when vegetation is included as a factor. However, additional root system traits should be considered when managing vegetated slopes to avoid shallow substrate mass movement. Traits including root distribution, length, orientation and diameter are recognized as influencing soil fixation, but do not consider the spatial and temporal dimensions of roots within a system. Thick roots act like soil nails on slopes and the spatial position of these thick roots determines the arrangement of the associated thin roots. Thin roots act in tension during failure on slopes and if they traverse the potential shear zone, provide a major contribution in protecting against landslides. We discuss how root traits change depending on ontogeny and climate, how traits are affected by the local soil environment and the types of plastic responses expressed by the plant. How a landslide engineer can use this information when considering slope stability and management strategies is discussed, along with perspectives for future research. This review encompasses many ideas, data and concepts presented at the Second International Conference ‘Ground Bio- and Eco-engineering: The Use of Vegetation to Improve Slope Stability—ICGBE2’ held at Beijing, China, 14–18 July 2008. Several papers from this conference are published in this edition of Plant and Soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Adventitious root development can be encountered in the first rooting type. Many tropical trees exhibit a very large cone of adventitious roots at the base of the trunk which reinforces the original primary root system. This type can be seen as a mixed type. In temperate species the adventitious development of root is often less spectacular because only the few first centimetres of the trunk base are concerned.

References

  • Abe K, Ziemer RR (1991a) Effect of tree roots on a shear zone: modeling reinforced shear stress. Can J For Res 21:1012–1019

    Article  Google Scholar 

  • Abe K, Ziemer RR (1991b) Effect of tree roots on shallow-seated landslides. In: Proc. IUFRO technical session on geomorphic hazards in managed forests; 5–11 August 1990; Montreal, Canada. Rice R M., technical coordinator. Gen. Tech. Rep. PSW-GTR-130, Berkeley, CA: Pacific Southwest Research Station, Forest Service, U.S.D.A. pp 11–20

  • Amin T, Beissalah Y, Hadzein E, Neville B (1987) Variations de la régénération du pivot de jeunes plants de chênes verts (Quercus ilex) après divers traumatismes. Ecol Medit 13:61–76

    Google Scholar 

  • Anderson CJ, Coutts MP, Ritchie RM, Campbell DJ (1989) Root extraction force measurements for Sitka spruce. Forestry 62:127–137

    Article  Google Scholar 

  • Atger C, Edelin C (1994a) Premières données sur l’architecture comparée des systèmes racinaires et caulinaires. Can J Bot 72:963–975

    Article  Google Scholar 

  • Atger C, Edelin C (1994b) Stratégies d’occupation du milieu souterrain par les systèmes racinaires des arbres. Rev Ecol (Terre Vie) 49:343–356

    Google Scholar 

  • Ba M (2008) Etude des propriétés biomécaniques et de la capacité de vie symbiotique des racines d’arbres adultes d’Acacia senegal Cand et de Prosopis juliflora Willd. PhD Thesis, Université Bordeaux I, France

  • Barthelemy D, Caraglio Y (2007) Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann Bot 99:375–407

    Article  PubMed  Google Scholar 

  • Bathurst JC, Bovoloa CI, Cisnerosb F (2009) Modelling the effect of forest cover on shallow landslides at the river basin scale. Ecol Eng (in press). doi:10.1016/j.ecoleng.2009.05.001

  • Bauerle TL, Smart DR, Bauerle WL, Stockert C, Eissenstat DM (2008) Root foraging in response to heterogeneous soil moisture in two grapevines that differ in potential growth rate. New Phytol 179:857–866

    Article  PubMed  Google Scholar 

  • Beismann H, Schweingruber F, Speck T, Körner C (2002) Mechanical properties of spruce and beech wood grown in elevated CO2. Trees: Struct Func 16:511–518

    CAS  Google Scholar 

  • Bell A (1991) Plant form. An illustrated guide to flowering plant morphology. Oxford University Press, New York

    Google Scholar 

  • Bengough AG, Bransby MF, Hans J, McKenna SJ, Roberts TJ, Valentine TA (2006) Root responses to soil physical conditions; growth dynamics from field to cell. J Exp Bot 57:437–447

    Article  PubMed  CAS  Google Scholar 

  • Bingham IJ, Bengough AG (2003) Morphological plasticity of wheat and barley roots in response to spatial variation in soil strength. Plant Soil 250:273–282

    Article  CAS  Google Scholar 

  • Bischetti GB, Chiaradia EA, Simonato T, Speziali B, Vitali B, Vullo P, Zocco A (2005) Root strength and root area of forest species in Lombardy. Plant Soil 278:11–22

    Article  CAS  Google Scholar 

  • Bischetti GB, Chiaradia EA, Epis T, Morlotti E (2009a) Root cohesion of forest species in the Italian Alps. Plant Soil (in press). doi:10.1007/s11104-009-9941-0

  • Bischetti GB, Chiaradia EA, D’Agostino V, Simonato T (2009b) Quantifying the effect of brush layering on slope stability. Ecol Eng (in press). doi:10.1016/j.ecoleng.2009.03.019

  • Block RMA, Rees KCJ, Knight JD (2006) A review of fine root dynamics in Populus plantations. Agrofor Syst 67:73–84

    Article  Google Scholar 

  • Bond WJ, Midgeley JJ (2001) Ecology of sprouting in woody plants: the persistence niche. Trends Ecol Evol 16:45–51

    Article  PubMed  Google Scholar 

  • Bradshaw AD (2006) Unravelling phenotypic plasticity—why should we bother? New Phytol 170:644–648

    Article  PubMed  Google Scholar 

  • Bremner PM, Preston GK, Destgroth CF (1986) A field comparison of sunflower (Helianthus annuus) and sorghum (Sorghum bicolor) in a long drying cycle.1. Water extraction. Aust J Agric Res 37:483–493

    Article  Google Scholar 

  • Brisson J, Reynolds JF (1994) The effect of neighbors on root distribution in a creosote bush (Larrea tridentata) population. Ecology 75:1693–1702

    Article  Google Scholar 

  • Burylo M, Rey F, Roumet C, Buisson E, Dutoit T (2009) Linking plant morphological traits to uprooting resistance in eroded marly lands (Southern Alps, France). Plant Soil (in press). doi:10.1007/s11104-009-9920-5

  • Cammeraat LH, van Beek LPH, Kooijman AM (2005) Vegetation succession and its consequences for slope stability in SE Spain. Plant Soil 278:135–147

    Article  CAS  Google Scholar 

  • Champagnat P, Baba J, Delaunay M (1974) Corrélations entre le pivot et ses ramifications dans le système racinaire de jeunes chênes cultivés sous brouillard nutritif. Revue Cytologie Biol Végétales 37:407–418

    Google Scholar 

  • Charles Dominique T, Mangenet T, Rey H, Jourdan C, Edelin C (2009) Architectural analysis of root system of sexually vs. vegetatively propagated yam (Dioscorea rotunda Poir.), a tuber monocot. Plant Soil 317:61–77

    Article  CAS  Google Scholar 

  • Charrier A (1969) Contribution à l’étude de la morphogenèse et de la multiplication vegetative du cacaoyer (Theobroma cacao L). Café Cacao Thé XIII(2):97–115

    Google Scholar 

  • Chiatante D, Scippa SG, Di Iorio A, Sarnataro M (2003) The influence of steep slopes on root system development. J Plant Growth Regul 21:247–260

    Article  CAS  Google Scholar 

  • Clark LJ, Price AH, Steele KA, Whalley WR (2008) Evidence from near-isogenic lines that root penetration increases with root diameter and bending stiffness in rice. Funct Plant Biol 35:1163–1171

    Article  Google Scholar 

  • Comas LH, Eissenstat DM (2009) Patterns in root trait variation among 25 co-existing North American forest species. New Phytol 182:919–928

    Article  Google Scholar 

  • Coppin NJ, Richards IJ (1990) Use of vegetation in civil engineering. CIRIA, Butterworths, London

    Google Scholar 

  • Coutts MP (1982) Growth of Sitka spruce seedlings with roots divided between soils of unequal matric potential. New Phytol 92:49–61

    Article  Google Scholar 

  • Craine JM, Lee WG (2003) Covariation in leaf and root traits for native and non-native grasses along an altitudinal gradient in New Zealand. Oecologia 134:471–478

    PubMed  CAS  Google Scholar 

  • Cruz RV, Harasawa H, Lal M, Wu S, Anokhin Y, Punsalmaa B, Honda Y, Jafari M, Li C, Huu Ninh N (2007) Asia. In: Parry ML et al (eds) Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 469–506

    Google Scholar 

  • Cui M, Caldwell MM (1996) Facilitation of plant phosphate acquisition by arbuscular mycorrhizas from enriched soil patches. I. Roots and hyphae exploiting the same soil volume. New Phytol 133:453–460

    Article  CAS  Google Scholar 

  • Danjon F, Fourcaud T, Bert D (2005) Root architecture and wind-firmness of mature Pinus pinaster. New Phytol 168:387–400

    Article  PubMed  Google Scholar 

  • Danjon F, Barker DH, Drexhage M, Stokes A (2008) Using 3D plant root architecture in models of shallow-slope stability. Ann Bot 101:1281–1293

    Article  PubMed  Google Scholar 

  • da Silva AP, Kay BD, Perfect E (1994) Characterization of the least limiting water range of soils. Soil Sci Soc Am J 58:1775–1781

    Google Scholar 

  • De Baets S, Poesen J, Reubens B, Wemans K, De Baerdemaeker J, Muys B (2008) Root tensile strength and root distribution of typical Mediterranean plant species and their contribution to soil shear strength. Plant Soil 305:207–226

    Article  CAS  Google Scholar 

  • Deeks LK, Bengough AG, Stutter MI, Young IM, Zhang XX (2008) Characterisation of flow paths and saturated conductivity in a soil block in relation to chloride breakthrough. J Hydrol 348:431–441

    Article  Google Scholar 

  • Dhakal AS, Sidle RC (2003) Long-term modeling of landslides for different forest management practices. Earth Surf Proc Land 28:853–868

    Article  Google Scholar 

  • Dhakal AS, Sidle RC (2004a) Pore water pressure assessment in a forest watershed: simulations and distributed field measurements related to forest practices. Water Resour Res 40:W02405. doi:1029/2003WR002017

    Article  Google Scholar 

  • Dhakal AS, Sidle RC (2004b) Distributed simulations of landslides for different rainfall conditions. Hydrol Proc 18:757–776

    Article  Google Scholar 

  • Di Iorio A, Lasserre B, Petrozzi L, Scippa GS, Chiatante D (2008) Adaptive longitudinal growth of first-order lateral roots of a woody species (Spartium junceum) to slope and different soil conditions—upward growth of surface roots. Env Exp Bot 63:207–215

    Article  Google Scholar 

  • Docker BB, Hubble TCT (2008) Quantifying root-reinforcement of river bank soils by four Australian tree species. Geomorphology 100:401–418

    Article  Google Scholar 

  • Drew MC (1975) Comparison of the effects of a localized supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot, in barley. New Phytol 75:479–490

    Article  CAS  Google Scholar 

  • Drew MC, Saker LR, Ashley TW (1973) Nutrient supply and the growth of the seminal root system in barley I: the effect of nitrate concentration on the growth of root axes and laterals J. Exp Bot 24:1189–1202

    Article  CAS  Google Scholar 

  • Drouet JL, Pages L (2007) GRAAL-CN: a model of GRowth, Architecture and ALlocation of Carbon and Nitrogen dynamics within whole plants formalised at the organ level. Ecol Model 206:231–249

    Article  CAS  Google Scholar 

  • Dupuy L, Fourcaud T, Stokes A (2005a) A numerical investigation into the influence of soil type and root architecture on tree anchorage. Plant Soil 278:119–134

    Article  CAS  Google Scholar 

  • Dupuy L, Fourcaud T, Stokes A (2005b) A numerical investigation into factors affecting the anchorage of roots in tension. Eur J Soil Sci 56:319–327

    Article  Google Scholar 

  • Dupuy L, Fourcaud T, Stokes A, Danjon F (2005c) A density based approach for the modelling of root architecture: application to Maritime pine (Pinus pinaster Ait.) root systems. J Theor Biol 236:323–334

    Article  PubMed  CAS  Google Scholar 

  • Dupuy L, Fourcaud T, Lac P, Stokes A (2007) A generic 3D finite element model of tree anchorage integrating soil mechanics and real root system architecture. Am J Bot 94:1506–1514

    Article  Google Scholar 

  • Dyanat Nejad H, Neville P (1972) Etude du mode d’action du méristème radical orthotrope dans le contrôle de la plagiotropie des racines chez Theobroma cacao L. Rev Générale Bot 79:319–340

    Google Scholar 

  • Easson DL, Pickles SJ, White EM (1995) A study of the tensile force required to pull wheat roots from soil. Ann Appl Biol 127:363–373

    Article  Google Scholar 

  • Edelin C, Atger C (1994) Stem and root tree architecture: questions for plant biomechanics. Biomimetics 2:253–266

    Google Scholar 

  • Eissenstat DM (1991) On the relationship between specific root length and the rate of root proliferation: a field study using citrus rootstocks. New Phytol 118:63–68

    Article  Google Scholar 

  • Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL (2000) Building roots in a changing environment: implications for root longevity. New Phytol 147:33–42

    Article  CAS  Google Scholar 

  • Ennos AR (1989) The mechanics of anchorage in seedlings of sunflower, Helianthus-annuus L. New Phytol 113:185–192

    Article  Google Scholar 

  • Ennos AR (1990) The anchorage of leek seedlings—the effect of root length and soil strength. Ann Bot 65:409–416

    Google Scholar 

  • Estaun V, Vicente S, Calvet C, Camprubi A, Busquets M (2007) Integration of arbuscular mycorrhiza inoculation in hydroseeding technology. Effects on plant growth and inter-species competition. Land Degrad Develop 18:621–630

    Article  Google Scholar 

  • Fan C, Su C (2009) Effect of soil moisture content on the deformation behaviour of root-reinforced soils subjected to shear. Plant Soil (in press). doi:10.1007/s11104-008-9856-1

  • Farley RA, Fitter AH (1999) The response of seven co-occurring woodland herbaceous perennials to localized nutrient-rich patches. J Ecol 87:849–859

    Article  Google Scholar 

  • Fitter AH (1985) Functional significance of root morphology and root system architecture. In: Fitter AH, Atkinson D, Read DJ, Usher MB (eds) Ecological interactions in soil. Blackwell Scientific, London, pp 87–106 British Ecological Society Special Publication No. 4

    Google Scholar 

  • Fitter AH, Stickland TR, Harvey ML, Wilson GW (1991) Architectural analysis of plant root systems. 1. Architectural correlates of exploitation efficiency. New Phytol 118:375–382

    Article  Google Scholar 

  • Fourcaud T, Zhang X, Stokes A, Lambers H, Körner C (2008) Plant growth modelling and applications: the increasing importance of plant architecture in growth models. Ann Bot 101:1053–1063

    Article  PubMed  Google Scholar 

  • Fournier M, Stokes A, Coutand C, Fourcaud T, Moulia B (2006) Tree biomechanics and growth strategies in the context of forest functional ecology. In: Herrel A, Speck T, Rowe N (eds) Biomechanics: a mechanical approach to the ecology of animals and plants. CRC Press, LCC, USA, pp 1–34

    Google Scholar 

  • Gabet EJ, Dunne T (2002) Landslides on coastal sage-scrub and grassland hillslopes in a severe El Niño winter: the effects of vegetation conversion on sediment delivery. Geol Soc Am Bull 114:983–990

    Article  Google Scholar 

  • Genet M, Stokes A, Salin F, Mickovski SB, Fourcaud T, Dumail J, van Beek LPH (2005) The influence of cellulose content on tensile strength in tree roots. Plant Soil 278:1–9

    Article  CAS  Google Scholar 

  • Genet M, Stokes A, Fourcaud T, Li M, Luo T (2006) Effect of altitude on root mechanical and chemical properties of Abies georgei in Tibet. In: Salmen L (ed) Proc. 5th Plant Biomechanics Conference. STFI-Packforsk AB, Sweden, pp 305–310

  • Genet M, Kokutse N, Stokes A, Fourcaud T, Cai X, Ji J, Mickovski SB (2008) Root reinforcement in plantations of Cryptomeria japonica D. Don: effect of tree age and stand structure on slope stability. For Ecol Manag 256:1517–1526

    Article  Google Scholar 

  • Genet M, Stokes A, Fourcaud T, Norris J (2009) The influence of plant diversity on slope stability in moist evergreen deciduous forest. Ecol Eng (in press). doi:10.1016/j.ecoleng.2009.05.018

  • Girouard RM (1995) Root form and stability of outplanted trees: results of a 1989 survey. Arboric J 19:121–146

    Google Scholar 

  • Goss MJ (1977) Effects of mechanical impedance on root growth in barley (Hordeum vulgare L.) I. Effects on the elongation and branching of seminal roots. J Exp Bot 28:96–111

    Article  Google Scholar 

  • Graefe S, Hertel D, Leuschner C (2008) Fine root dynamics along a 2, 000-m elevation transect in South Ecuadorian mountain rainforests. Plant Soil 313:155–166

    Article  CAS  Google Scholar 

  • Greenway DR (1987) Vegetation and slope stability. In: Anderson MG, Richards KS (eds) Slope stability. Wiley, Chichester, pp 187–230

    Google Scholar 

  • Greenwood JR (2006) Slip4ex—a program for routine slope stability analysis to include the effects of vegetation, reinforcement and hydrological changes. Geotech Geol Eng 24:449–465

    Article  Google Scholar 

  • Guerrero-Campo J, Palacio S, Perez-Rontome C, Montserrat-Marti G (2006) Effect of root system morphology on root-sprouting and shoot-rooting abilities in 123 plant species from eroded lands in North-east Spain. Ann Bot 98:439–447

    Article  PubMed  Google Scholar 

  • Hackett C (1972) A method of applying nutrients locally to roots under controlled conditions and some morphological effects of locally applied nitrate on the branching of wheat roots. Aus J Biol Sci 25:1169–1180

    CAS  Google Scholar 

  • Halle F, Oldeman RAA (1970) Essai sur l’architecture et la dynamique de croissance des arbres tropicaux. Masson, Paris

    Google Scholar 

  • Hendricks JJ, Hendrick RL, Wilson CA, Mitchell RJ, Pecot SD, Guo D (2006) Assessing the patterns and controls of fine root dynamics: an empirical test and methodological review. J Ecol 94:40–57

    Article  Google Scholar 

  • Hermann RK (1977) Growth and production of tree roots. In: Marshall JK (ed) The belowground ecosystem: a synthesis of plant-associated processes. Colorado State University, Fort Collins, pp 7–28

    Google Scholar 

  • Hodge A (2004) The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol 162:9–24

    Article  Google Scholar 

  • Hodge A, Robinson D, Fitter AH (2000) An arbuscular mycorrhizal inoculum enhances root proliferation in, but not nitrogen capture from, nutrient-rich patches in soil. New Phytol 145:575–584

    Article  CAS  Google Scholar 

  • Hubble TC, Docker BB, Rutherfurd ID (2009) The role of riparian trees in maintaining river bank stability: a review on Australian experience and practice. Ecol Eng (in press). doi:10.1016/j.ecoleng.2009.04.006

  • Huber-Sannwald E, Pyke DA, Caldwell MM (1996) Morphological plasticity following species–species recognition and competition in two perennial grasses. Am J Bot 83:919–931

    Article  Google Scholar 

  • Huber-Sannwald E, Pyke DA, Caldwell MM (1997) Perception of neighbouring plants by rhizomes and roots: morphological manifestations of a clonal plant. Can J Bot 75:2146–2157

    Google Scholar 

  • Jackson M, Roering JJ (2009) Post-fire geomorphic response in steep, forested landscapes: Oregon Coast Range, USA. Quat Sci Rev 28:1131–1146

    Google Scholar 

  • Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411

    Article  Google Scholar 

  • Jenik J (1978) Roots and root systems in tropical trees: morphologic and ecologic aspects. In: Tomlinson P, Zimmermann M (eds) Tropical trees as living systems. Cambridge University Press, London, pp 323–349

    Google Scholar 

  • Jourdan C, Rey H, Guédon Y (1995) Architectural analysis and modelling of the branching process of the young oil-palm root system. Plant Soil 177:63–72

    Article  CAS  Google Scholar 

  • Kahn F (1983) Architecture comparée des forêts tropicales humides et dynamique de la rhizosphère. PhD Thesis, Université Sciences et Techniques du Languedoc Montpellier, France

  • Karrenberg S, Blaser S, Kollmann J, Speck T, Edwards PJ (2003) Root anchorage of saplings and cuttings of woody pioneer species in a riparian environment. Funct Ecol 17:170–177

    Article  Google Scholar 

  • Kazda M, Schmid L (2008) Clustered distribution of tree roots and soil water exploitation. In: Lüttge U, Beyschlag W, Büdel B, Francis D (eds) Progress in botany 70. Springer-Verlag, Berlin, pp 219–235

    Google Scholar 

  • Khuder H (2007) L’architecture et les propriétés mécaniques des systèmes racinaires des arbres qui poussent en pente. PhD thesis, Université Bordeaux I, France

  • Khuder H, Danjon F, Stokes A, Fourcaud T (2006) Growth response and root architecture of Black locust seedlings growing on slopes and subjected to mechanical perturbation. In: Salmen L (ed) Proceedings of the 5th Plant Biomechanics Conference. STFI-Packforsk AB, Sweden, pp 299–304

  • Khuder H, Stokes A, Danjon F, Gouskou K, Lagane F (2007) Is it possible to manipulate root anchorage in young trees? Plant Soil 294:87–102

    Article  CAS  Google Scholar 

  • Kiss JZ, Miller KM, Ogden LA, Roth KK (2002) Phototropism and gravitropism in lateral roots of Arabidopsis. Plant Cell Physiol 43:35–43

    Article  PubMed  CAS  Google Scholar 

  • Kokutse N, Fourcaud T, Kokou K, Neglo K, Lac P (2006) 3D Numerical modelling and analysis of the influence of forest structure on hill slopes stability. In: Marui H, Marutani T, Watanabe N, Kawabe H, Gonda Y, Kimura M, Ochiai H, Ogawa K, Fiebiger G, Heumader J, Rudolf-Miklau F, Kienholz H, Mikos M (eds) Interpraevent 2006, disaster mitigation of debris flows, slope failures and landslides. Universal Academy Press, Tokyo, pp 561–567. ISBN 4-946443-98-3

    Google Scholar 

  • Konopka B, Pages L, Doussan C (2009) Soil compaction modifies morphological characteristics of seminal maize roots. Plant Soil Environ 55:1–10

    Google Scholar 

  • Körner C, Renhardt U (1987) Dry matter partitioning and root length/leaf area ratios in herbaceous perennial plants with diverse altitudinal distribution. Oecologia 74:411–418

    Article  Google Scholar 

  • Köstler JN, Bruckner E, Bibelriether H (1968) Die Wurzeln der Waldbaume. Verlag Paul Parey, Hamburg

    Google Scholar 

  • Kutschera L, Lichtenegger E (1997) Wurzeln. Bewurzelung von Pflanzen in Verschiedenen Lebensräumen. Stapfia 49, Land Oberösterreich, OÖ. Landesmuseum, Linz, Austria

  • Lambers H, Chapin FS III, Pons TL (2008) Plant physiological ecology. Springer Verlag, New York

    Google Scholar 

  • Loades KW, Bengough AG, Bransby MF, Hallett PD (2009) Planting density influence on fibrous root reinforcement of soils. Ecol Eng (in press). doi:10.1016/j.ecoleng.2009.02.005

  • Lucas M, Godin C, Jay Allemand C, Laplaze L (2008) Auxin fluxes in the root apex co-regulate gravitropism and lateral root initiation. J Exp Bot 59:55–66

    Article  PubMed  CAS  Google Scholar 

  • Mattia C, Bischetti GB, Gentile F (2005) Biotechnical characteristics of root systems of typical Mediterranean species. Plant Soil 278:23–32

    Article  CAS  Google Scholar 

  • May LH, Chapman FH, Aspinall D (1965) Quantitative studies of root growth I: the effect of nutrient concentration. Aus J Biol Sci 18:25–35

    CAS  Google Scholar 

  • May LH, Randles FH, Aspinall D, Paleg LG (1967) Quantitative studies of root growth II: growth in the early stages of development. Aus J Biol Sci 20:273–283

    Google Scholar 

  • McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185

    Article  PubMed  Google Scholar 

  • McKenzie BM, Bengough AG, Hallett PD, Thomas WTB, Forster BP, McNicol JW (2009) Deep rooting and drought screening of cereal crops: a novel field-based method and its application. Field Crops Research 112:165–171

    Google Scholar 

  • McKyes E (1985) Soil cutting and tilling. Developments in agricultural engineering. Elsevier, Amsterdam

    Google Scholar 

  • Megahan WF (1983) Hydrologic effects of clearcutting and wildlife on steep granitic slopes in Idaho. Water Resour Res 19:811–819

    Article  Google Scholar 

  • Mersereau RC, Dyrness CT (1972) Accelerated mass wasting after logging and slash burning in western Oregon. J Soil Water Conserv 27:112–114

    Google Scholar 

  • Mickovski SB, van Beek LPH (2009) Root morphology and soil reinforcement effects of young vetiver (Vetiveria zizanioides) plants grown in a semi-arid climate. Plant Soil (in press). doi:10.1007/s11104-009-0130-y

  • Mickovski SB, van Beek LPH, Salin F (2005) Uprooting resistance of vetiver grass (Vetiveria zizanioides). Plant Soil 278:33–41

    Article  CAS  Google Scholar 

  • Mickovski SB, Bengough AG, Bransby MF, Davies MCR, Hallett PD, Sonnenberg R (2007) Material stiffness, branching pattern and soil matric potential affect the pullout resistance of model root systems. Eur J Soil Sci 58:1471–1481

    Article  Google Scholar 

  • Mickovski SB, Hallett PD, Bransby MF, Davies MCR, Sonnenberg R, Bengough AG (2009) Mechanical reinforcement of soil by willow roots: impacts of root properties and root failure mechanism. Soil Sci Soc Am J 73:1276–1285

    Article  CAS  Google Scholar 

  • Miyazaki T (2006) Water flow in soils, 2nd edn. Taylor and Francis, London

    Google Scholar 

  • Mullen JL, Wolverton C, Hangarter RP (2005) Apical control, gravitropic signaling, and the growth of lateral roots in Arabidopsis. Adv Space Res 36:1211–1217

    Article  Google Scholar 

  • Nakamura H, Nghiem QM, Iwasa N (2007) Reinforcement of tree roots in slope stability: a case study from the Ozawa slope in Iwate Prefecture, Japan. In: Stokes A, Spanos I, Norris JE, Cammeraat LH (eds) Eco- and ground bio-engineering: the use of vegetation to improve slope stability. Developments in plant and soil sciences vol. 103. Springer, Dordrecht, pp 81–90

  • Nicoll BC, Berthier S, Achim A, Gouskou K, Danjon F, van Beek LPH (2006) The architecture of Picea sitchensis structural root systems on horizontal and sloping terrain. Trees-Struct Func 20:701–712

    Google Scholar 

  • Noguchi S, Tsuboyama Y, Sidle RC, Hosoda I (1997) Spatially distributed morphological characteristics of macropores in forest soils of Hitachi Ohta Experimental Watershed. Japan Jap J For Res 2:207–215

    Google Scholar 

  • Norman SA, Schaetzl RJ, Small TW (1995) Effects of slope angle on mass movement by tree uprooting. Geomorphology 14:19–27

    Article  Google Scholar 

  • Norris JE (2005) Root reinforcement by hawthorn and oak roots on a highway cut-slope in Southern England. Plant Soil 278:43–53

    Article  CAS  Google Scholar 

  • Norris JE, Stokes A, Mickovski SB, Cammeraat E, van Beek LPH, Nicoll B, Achim A (eds) (2008) Slope stability and erosion control: ecotechnological solutions. Springer, Dordrecht

    Google Scholar 

  • Operstein V, Frydman S (2000) The influence of vegetation on soil strength. Ground Improvement 4:81–89

    Article  Google Scholar 

  • Osman N, Barakbah SS (2006) Parameters to predict slope stability—soil water and root profiles. Ecol Eng 28:90–95

    Article  Google Scholar 

  • Palenzuela J, Azcon-Aguilar C, Figueroa D, Caravaca F, Roldan A, Barea JM (2002) Effects of mycorrhizal inoculation of shrubs from Mediterranean ecosystems and composted residue application on transplant performance and mycorrhizal developments in a desertified soil. Biol Fert Soils 36:170–175

    Article  Google Scholar 

  • Passioura JB (1988) Water transport in and into roots. Ann Rev Plant Physiol Plant Mol Biol 39:245–265

    Article  Google Scholar 

  • Passioura JB (1991) Soil structure and plant-growth. Aust J Soil Res 29:717–728

    Article  Google Scholar 

  • Perillo CA, Gupta SC, Nater EA, Moncrief JF (1999) Prevalence and initiation of preferential flow paths in a sandy loam with argillic horizon. Geoderma 89:307–331

    Article  Google Scholar 

  • Pierret A, Latchackak K, Chathanvongsa P, Sengtaheuanghoung O, Valentin C (2007) Interactions between root growth, slope and soil detachment depending on land use: a case study in a small mountain catchment of Northern Laos. Plant Soil 301:51–64

    Article  CAS  Google Scholar 

  • Pohl M, Alig D, Körner C, Rixen C (2009) Higher plant diversity enhances soil stability in disturbed alpine ecosystems. Plant Soil (in press). doi:10.1007/s11104-009-9906-3

  • Pollen N (2007) Temporal and spatial variability in root reinforcement of streambanks: accounting for soil shear strength and moisture. Catena 69:197–205

    Article  Google Scholar 

  • Pollen N, Simon A (2005) Estimating the mechanical effects of riparian vegetation on stream bank stability using a fiber bundle model. Water Res Res 41:W07025. doi:10.1029/2004WR003801

    Article  Google Scholar 

  • Pollen-Bankhead N, Simon A (2009) Enhanced application of root-reinforcement algorithms for bank-stability modeling. Earth Surf Proc Land 34(4):471–480. doi:10.1002/esp.1690

    Article  Google Scholar 

  • Poorter H, Remkes C (1990) Leaf area ratio and net assimilation rate of 24 wild species differing in relative growth rate. Oecologia 83:553–559

    Article  Google Scholar 

  • Poot P, Lambers H (2008) Shallow-soil endemics: adaptive advantages and constraints of a specialized root-system morphology. New Phytol 178:371–381

    Article  PubMed  Google Scholar 

  • Portas CAM, Taylor HM (1976) Growth and survival of young plant roots in dry soil. Soil Sci 121:170–175

    Article  Google Scholar 

  • Preti F, Dani A, Laio F (2009) Root profiles assessment by means of hydrological, pedological and above-ground vegetation information for bio-engineering purposes. Ecol Eng (in press). doi:10.1016/j.ecoleng.2009.07.010

  • Reubens B, Poesen J, Danjon F, Geudens G, Muys B (2007) The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture: a review. Trees: Struct Func 21:385–402

    Google Scholar 

  • Reubens B, Poesen J, Nyssen J, Leduc Y, Zenebe A, Tewoldeberhan S, Bauer H, Gebrehiwot K, Deckers J, Muys B (2009) Establishment and management of woody seedlings in gullies in a semi-arid environment (Tigray, Ethiopia). Plant Soil (in press). doi:10.1007/s11104-009-0097-8

  • Rice RM, Foggin GT (1971) Effect of high intensity storms on soil slippage on mountainous watersheds in southern California. Water Resour Res 7:1485–1496

    Article  Google Scholar 

  • Roering JJ, Schmidt KM, Stock JD, Dietrich WE, Montgomery DR (2003) Shallow landsliding, root reinforcement, and the spatial distribution of trees in the Oregon Coast Range. Can Geotech J 40:237–253

    Article  Google Scholar 

  • Roumet C, Urcelay C, Díaz S (2006) Suites of root traits differ between annual and perennial species growing in the field. New Phytol 170:357–368

    Article  PubMed  Google Scholar 

  • Rune G (2003) Slits in container wall improve root structure and stem straightness of outplanted Scots pine seedlings. Silva Fenn 37:333–342

    Google Scholar 

  • Sakai A, Sakai S, Akiyama F (1997) Do sprouting tree species on erosion-prone sites carry large reserves of resources? Ann Bot 79:625–630

    Article  Google Scholar 

  • Sakals ME, Sidle RC (2004) A spatial and temporal model of root cohesion in forest soils. Can J For Res 34:950–958

    Article  Google Scholar 

  • Sasse J, Sands R (1997) Configuration and development of root systems of cuttings and seedlings of Eucalyptus globulus. New Forests 14:85–105

    Article  Google Scholar 

  • Sati SP, Sundriyal YP (2007) Role of some species in slope instability. Himalayan Geol 28:75–78

    Google Scholar 

  • Schenk HJ (2008) Soil depth, plant rooting strategies and species’ niches. New Phytol 178:223–225

    Article  PubMed  Google Scholar 

  • Schenk HJ, Jackson RB (2002) Rooting depths, lateral spreads, and below-ground/above-ground allometries of plants in water-limited ecosystems. J Ecol 90:480–494

    Article  Google Scholar 

  • Schiechtl HM (1980) Bioengineering for land reclamation and conservation. University of Alberta Press, Edmonton

    Google Scholar 

  • Schmidt KM, Roering JJ, Stock JD, Dietrich WE, Montgomery DR, Schaub T (2001) Root cohesion variability and shallow landslide susceptibility in the Oregon Coast. Range Can Geotech J 38:995–1024

    Article  Google Scholar 

  • Schwarz M, Preti F, Giadrossich F, Lehmann P, Or D (2009) Quantifying the role of vegetation in slope stability: a case study in Tuscany (Italy). Ecol Eng (in press). doi:10.1016/j.ecoleng.2009.06.014

  • Scippa GS, Di Michele M, Di Iorio A, Costa A, Lasserre B, Chiatante D (2006) The response of Spartium junceum roots to slope: anchorage and gene factors. Ann Bot 97:857–866

    Article  PubMed  CAS  Google Scholar 

  • Sharp RE, Poroyko V, Hejlek LG, Spollen WG, Springer GK, Bohnert HJ, Nguyen HT (2004) Root growth maintenance during water deficits: physiology to functional genomics. J Exp Bot 55:2343–2351

    Article  PubMed  CAS  Google Scholar 

  • Sidle RC (1992) A theoretical model of the effects of timber harvesting on slope stability. Water Resour Res 28:1897–1910

    Article  Google Scholar 

  • Sidle RC, Burt TP (2009) Temperate forests and rangelands. In: Slaymaker O, Spencer T, Embleton-Hamann C (eds) Geomorphology and Global Environmental Change, Chapter 12. Cambridge University Press, UK, pp 321–343

    Google Scholar 

  • Sidle RC, Ochiai H (2006) Landslides: processes, prediction, and land use. Am Geophysical Union, Water Resour Monogr No. 18. AGU, Washington, DC, p 312

  • Sidle RC, Pearce AJ, O’Loughlin CL (1985) Hillslope stability and land use. Am Geophysical Union, Water Resour Monogr 11. Washington, DC, p 140

  • Sidle RC, Ziegler AD, Negishi JN, Abdul Rahim N, Siew R, Turkelboom F (2006) Erosion processes in steep terrain—truths, myths, and uncertainties related to forest management in Southeast Asia. For Ecol Manage 224:199–225

    Article  Google Scholar 

  • Simon A, Collison JC (2002) Quantifying the mechanical and hydrologic effects of riparian vegetation on streambank stability. Earth Surf Proc Land 27:527–546

    Article  Google Scholar 

  • Sinnett D, Morgan G, Williams M, Hutchings TR (2008) Penetration resistance and tree root development. Soil Use Manag 24:273–280

    Article  Google Scholar 

  • Snyman HA (2006) A greenhouse study on root dynamics of cactus pears. Opuntia ficus-indica and O. robusta. J Arid Env 65:529–542

    Article  Google Scholar 

  • Soethe N, Lehmann J, Engels C (2006) Root morphology and anchorage of six native tree species from a tropical montane forest and an elfin forest in Ecuador. Plant Soil 279:173–185

    Article  CAS  Google Scholar 

  • Spoor G, Godwin RJ (1979) Soil deformation and shear-strength characteristics of some clay soils at different moisture contents. J Soil Sci 30:483–498

    Article  Google Scholar 

  • Stangl R, Hochbichler E, Bellos P, Florineth F (2009) Allometric estimation of the above-ground biomass components of Alnus incana (L.) Moench used for landslide stabilisation at Bad Goisern (Austria). Plant Soil (in press). doi:10.1007/s11104-008-9888-6

  • Stokes A, Fitter AH, Coutts MP (1995) Responses of young trees to wind: effects on root architecture and anchorage strength. J Exp Bot 46:1139–1146

    Article  CAS  Google Scholar 

  • Stokes A, Ball J, Fitter AH, Brain P, Coutts MP (1996) An experimental investigation into the resistance of model root systems to uprooting. Ann Bot 78:415–421

    Article  Google Scholar 

  • Stokes A, Lucas A, Jouneau L (2007) Plant biomechanical strategies in response to frequent disturbance: uprooting of Phyllostachys nidularia (Poaceae) growing on landslide prone slopes in Sichuan. China Am J Bot 94:1129–1136

    Article  Google Scholar 

  • Stokes A, Norris JE, van Beek LPH, Bogaard T, Cammeraat E, Mickovski SB, Jenner A, di Iorio A, Fourcaud T (2008) How vegetation reinforces soil on slopes. In: Norris JE, Stokes A, Mickovski SB, Cammeraat E, van Beek LPH, Nicoll B, Achim A (eds) Slope stability and erosion control: ecotechnological solutions. Springer, Dordrecht, pp 65–118

    Chapter  Google Scholar 

  • Stokes A, Sotir R, Chen W, Ghestem M (2009) Soil bio- and eco-engineering in China: past experience and future priorities. Ecol Eng (in press). doi:10.1016/j.ecoleng.2009.07.008

  • Stone EL, Kalisz PJ (1991) On the maximum extent of tree roots. For Ecol Manage 46:59–102

    Article  Google Scholar 

  • Swanston DN, Swanson FJ (1976) Timber harvesting, mass erosion, and steepland forest geomorphology in the Pacific Northwest. In: Coates DR (ed) Geomorphology and engineering. Dowden, Hutchinson, and Ross, Stroudsburg, pp 199–221

    Google Scholar 

  • Szota C, Veneklaas EJ, Koch JM, Lambers H (2007) Root architecture of jarrah (Eucalyptus marginata) trees in relation to post-mining deep ripping in Western Australia. Rest Ecol 15:S65–S73

    Google Scholar 

  • Tarantino A, Mongiovi L, McDougall JR (2002) Analysis of hydrological effects of vegetation on slope stability. In: Juca JFT, de Campos TMP, Marinho FAM (eds) Unsaturated soils: proceedings of the third international conference on unsaturated soils. UNSAT, Recife

    Google Scholar 

  • Tasser E, Mader M, Tappeiner U (2003) Effects of land use in alpine grasslands on the probability of landslides. Basic Appl Ecol 4:271–280

    Article  Google Scholar 

  • Thaler P, Pagès L (2000) Why are laterals less affected than main axes by homogeneous unfavourable physical conditions? A model-based hypothesis. In: Stokes A (ed) The supporting roots of trees and woody plants: form, function and physiology. Kluwer Academic, Dordrecht, pp 209–215

    Google Scholar 

  • Thongo M’bou A, Jourdan C, Deleporte P, Nouvellon Y, Saint-André L, Bouillet J-P, Mialoundama F, Mabiala A, Epron D (2008) Root elongation in tropical Eucalyptus plantations: effect of soil water content. Ann For Sci 65:609

    Article  Google Scholar 

  • Tosi M (2007) Root tensile strength relationships and their slope stability implications of three shrub species in the Northern Apennines (Italy). Geomorphology 87:268–283

    Article  Google Scholar 

  • Tsakaldimi M, Tsitsoni T, Ganatsas P, Zagas T (2009) A comparison of root architecture and shoot morphology between naturally regenerated and container-grown seedlings of Quercus ilex. Plant Soil (in press). doi:10.1007/s11104-009-9974-4

  • Tsuboyama Y, Sidle RC, Noguchi S, Hosoda I (1994) Flow and solute transport through the soil matrix and macropores of a hillslope segment. Water Resour Res 30:879–890

    Article  CAS  Google Scholar 

  • Tsutsumi D, Kosugi K, Mizuyama T (2003) Root-system development and water-extraction model considering hydrotropism. Soil Sci Soc Am J 67:387–401

    Article  CAS  Google Scholar 

  • van Beek LPH, Wint J, Cammeraat LH, Edwards JP (2005) Observation and simulation of root reinforcement on abandoned Mediterranean slopes. Plant Soil 278:55–74

    Article  CAS  Google Scholar 

  • Vogt KA, Vogt DJ, Palmiotto PA, Boon P, O’Hara J, Asbjornsen H (1996) Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant Soil 187:159–219

    Article  CAS  Google Scholar 

  • Vogt J, Fonti P, Conedera M, Schroder B (2006) Temporal and spatial dynamic of stool uprooting in abandoned chestnut coppice forests. Forest Ecol Manag 235:88–95

    Article  Google Scholar 

  • Waldron LJ (1977) Shear resistance of root-permeated homogeneous and stratified soil. Soil Sci Soc Am J 41:843–849

    Article  Google Scholar 

  • Waldron LJ, Dakessian S (1982) Effect of grass, legume and tree roots on soil shearing resistance. J Soil Sci Soc Am 46:894–899

    Google Scholar 

  • Walker LR, Velazquez E, Shiels AB (2009) Applying lessons from ecological succession to the restoration of landslides. Plant Soil (in press). doi:10.1007/s11104-008-9864-1

  • Wang X, Yang D, Yang W, Clary CR, Shang S (2009) Simulation of land use-soil interactive effects on water and sediment yields at watershed scale. Ecol Eng (in press). doi:10.1016/j.ecoleng.2008.11.011

  • Watson A, Phillips C, Marden M (1999) Root strength, growth, and rates of decay: root reinforcement changes of two tree species and their contribution to slope stability. Plant Soil 217:39–47

    Article  Google Scholar 

  • Watt M, McCully ME, Jeffree CE (1993) Plant and bacterial mucilages of the maize rhizosphere—comparison of their soil binding-properties and histochemistry in a model system. Plant Soil 151:151–165

    Article  CAS  Google Scholar 

  • Westoby M, Wright IJ (2006) Land-plant ecology on the basis of functional traits. Trends Ecol Evol 21:261–268

    Article  PubMed  Google Scholar 

  • Wilkinson PL, Anderson MG, Lloyd DM, Renaud JP (2002) Landslide hazard and bioengineering: towards providing improved decision support through integrated numerical model development. Env Model Soft 17:333–344

    Article  Google Scholar 

  • Wright IJ, Westoby M (1999) Differences in seedling growth behaviour among species trait correlations across species and trait shifts along nutrient compared to rainfall gradients. J Ecol 87:85–97

    Article  Google Scholar 

  • Wu TH (1976) Investigation of landslides on Prince of Wales Island, Alaska, Geotechnical Engr. Report N°5, dept. of Civil Engr. Ohio State University, Columbus, p 94

    Google Scholar 

  • Wu TH (2007) Root reinforcement: analyses and experiments. In: Norris JE, Stokes A, Mickovski SB, Cammeraat E, van Beek LPH, Nicoll B, Achim A (eds) Slope stability and erosion control: ecotechnological solutions. Springer, Dordrecht, pp 21–30

    Google Scholar 

  • Wu TH, McKinnel WP, Swanston DN (1979) Strength of tree roots and landslides on Prince of Wales Island. Alaska Can Geotech J 16:19–33

    Article  Google Scholar 

  • Zhang J, Dong Y (2009) Factors affecting species diversity of plant communities and the restoration process in the loess area of China. Ecol Eng (in press). doi:10.1016/j.ecoleng.2009.04.001

  • Ziemer RR (1981) The role of vegetation in the stability of forested slopes. Proceedings of the International Union of Forestry Research Organizations, XVII World Congress. Kyoto, Japan. Vol. I, pp 297–308

  • Zobel RW (1996) Genetic control of root systems. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker, New York, pp 21–30

    Google Scholar 

Download references

Acknowledgements

Funding for AS, CA and TF was received from INRA (Jeune Equipe), CNRS (EcoPente project) and Agropolis Fondation, Montpellier. AMAP (Botany and Computational Plant Architecture) is a joint research unit which associates CIRAD (UMR51), CNRS (UMR5120), INRA (UMR931), IRD (2M123), and Montpellier 2 University (UM27). The Scottish Crop Research Institute receives grant-in-aid support from the Scottish Government Rural and Environment Research and Analysis Directorate. Thanks are due to the Chinese Academy of Sciences and LIAMA, in particular B. Hong and X. Zhang, for their help in the organisation of the ICGBE2 conference.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexia Stokes.

Additional information

Responsible Editor: Yongguan Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stokes, A., Atger, C., Bengough, A.G. et al. Desirable plant root traits for protecting natural and engineered slopes against landslides. Plant Soil 324, 1–30 (2009). https://doi.org/10.1007/s11104-009-0159-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-0159-y

Keywords

Navigation