Skip to main content
Log in

Hydrophilic interaction (HILIC) and reverse phase liquid chromatography (RPLC)–high resolution MS for characterizing lipids profile disruption in serum of anabolic implanted bovines

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Glycerophospholipids have been highlighted as the major lipids class affected by trenbolone acetate/estradiol implant administration in bovines. Non-targeted hydrophilic interaction chromatography (HILIC) and reverse phase liquid chromatography (RPLC) coupled to high resolution mass spectrometry have been successfully applied for characterizing lipid profile disruption in serum of implanted bovines. HILIC data pointed towards significant decrease of C22 fatty acids in implanted animals, i.e., C22:3 (p < 0.05), C22:4 (p < 0.05) and C22:6 (p < 0.01), whilst RPLC data confirmed depletion of glycerophospholipids (phosphatidylglycerols, phosphatidylcholine, phosphatidic acid and phosphatidylethanolamine) with C22 fatty acid chains. Using these two complementary methods, complex lipids with the same alkyl chain have been putatively characterized and could further serve to understand the biological mechanism of illicit administration of trenbolone acetate/estradiol implant. These metabolites underpin glycerophospholipid metabolism as potential pathway, which was identified using metabolomic pathway analysis and MetExplore platforms. We hypothesized that implantation of exogenous androgenic and estrogenic steroids induces a depletion of glycerophospholipids with C22 FA chains, by decreasing high-density lipoproteins, the main transporters of glycerophospholipids in plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bird, S. S., Marur, V. R., Sniatynski, M. J., Greenberg, H. K., & Kristal, B. S. (2011). Serum lipidomics profiling using LC–MS and high energy collisional dissociation fragmentation: Focus on triglyceride detection and characterization. Analytical Chemistry, 83(17), 6648–6657.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cajka, T., & Fiehn, O. (2014). Comprehensive analysis of lipids in biological systems by liquid chromatography–mass spectrometry. Trends in Analytical Chemistry, 61, 192–206. doi:10.1016/j.trac.2014.04.017.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cinci, G., Guerranti, R., Pagani, R., Carlucci, F., Terzuoli, L., Rosi, F., & Marinello, E. (2000). Fatty acid composition of phospholipids, triglycerides and cholesterol in serum of castrated and estradiol treated rats. Life Sciences, 66(17), 1647–1654.

    Article  CAS  PubMed  Google Scholar 

  • Cinci, G., Pagani, R., Pandolfi, M. L., Porcelli, B., Pizzichini, M., & Marinello, E. (1993). Effects of testosterone on cholesterol levels and fatty acid composition in the rat. Life Sciences, 53(2), 91–97.

    Article  CAS  PubMed  Google Scholar 

  • Cottret, L., Wildridge, D., Vinson, F., Barrett, M. P., Charles, H., Sagot, M.-F., & Jourdan, F. (2010). MetExplore: A web server to link metabolomic experiments and genome-scale meta-bolic networks. Nucleic Acids Research, 38, W132–W137.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Crook, D., & Seed, M. (1990). Endocrine control of plasma lipoprotein metabolism: Effects of gonadal steroids. Baillieres Clinical Endocrinology and Metabolism, 4(4), 851–875.

    Article  CAS  PubMed  Google Scholar 

  • Dervilly-Pinel, G., Weigel, S., Lommen, A., Chereau, S., Rambaud, L., Essers, M., et al. (2011). Assessment of two complementary liquid chromatography coupled to high resolution mass spectrometry metabolomics strategies for the screening of anabolic steroid treatment in calves. Analytica Chimica Acta, 700, 144–154.

    Article  CAS  PubMed  Google Scholar 

  • Dyer, E. G., & Bligh, W. J. (1959). A Rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911–917.

    Article  PubMed  Google Scholar 

  • Fahy, E., Subramaniam, S., Brown, H. A., Glass, C. K., Merrill, A. H, Jr, Murphy, R. C., et al. (2005). A comprehensive classification system for lipids. Journal of Lipid Research, 46, 839–861.

    Article  CAS  PubMed  Google Scholar 

  • Gallart-Ayala, H., Chéreau, S., Dervilly-Pinel, G., & Le Bizec, B. (2015). Potential of mass spectrometry metabolomics for chemical food safety. Bioanalysis, 7(1), 133–140.

    Article  CAS  PubMed  Google Scholar 

  • Gallart-Ayala, H., Courant, F., Severe, S., Antignac, J.-P., Morio, F., Abadie, J., & Le Bizec, B. (2013). Versatile lipid profiling by liquid chromatography–high resolution mass spectrometry using all ion fragmentation and polarity switching. Preliminary application for serum samples phenotyping related to canine mammary cancer. Analytica Chimica Acta, 796, 75–83. doi:10.1016/j.aca.2013.08.006.

    Article  CAS  PubMed  Google Scholar 

  • Gao, F., Tian, X. K., Wen, D. W., Liao, J., Wang, T., & Liu, H. W. (2006). Analysis of phospholipid species in rat peritoneal surface layer by liquid chromatography/electrospray ionization ion-trap mass spectrometry. Biochimica et Biophysica Acta, 1761, 667–676.

    Article  CAS  PubMed  Google Scholar 

  • Glazer, G. (1992). Atherogenic effects of anabolic steroids on serum lipid levels: A literature review. Archives of Internal Medicine, 152(3), 535.

    Article  Google Scholar 

  • Holcapeka, M., Cífkováa, E., Cervenáa, B., Lísaa, M., Vostálováb, J., & Galuszka, J. (2015). Determination of nonpolar and polar lipid classes in human plasma, erythrocytes and plasma lipoprotein fractions using ultrahigh-performance liquid chromatography-mass spectrometry. Journal of Chromatography A, 1377, 85–91.

    Article  Google Scholar 

  • Horrocks, L. A., & Yeo, Y. K. (1999). Health benefits of docosahexaenoic acid (DHA). Pharmacological Research, 40, 211–225.

    Article  CAS  PubMed  Google Scholar 

  • Jacob, C. C., Dervilly-Pinel, G., Biancotto, G., Monteau, F., & Le Bizec, B. (2014). Global urine fingerprinting by LC–ESI(+)–HRMS for better characterization of metabolic pathway disruption upon anabolic practices in bovine. Metabolomics,. doi:10.1007/s11306-014-0685-3.

    Google Scholar 

  • Kessner, D., Chambers, M., Burke, R., Agusand, D., & Mallick, P. (2008). ProteoWizard: Open source software for rapid proteomics tools development. Bioinformatics, 24(21), 2534–2536.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kitson, A. P., Marks, K. A., Shaw, B., Mutch, D. M., & Stark, K. D. (2013). Treatment of ovariectomized rats with17β-estradiol increases hepatic delta-6 desaturase enzyme expression and docosahexaenoic acid levels in hepatic and plasma phospholipids. Prostaglandins Leukotrienes and Essential Fatty Acids, 89, 81–88.

    Article  CAS  Google Scholar 

  • Koen, S., dos Santos Pereira, A., Vanhoenacker, G., David, F., & Sandra, P. (2010). Comprehensive blood plasma lipidomics by liquid chromatography/quadrupole time-of-flight mass spectrometry. Journal of Chromatography A, 1217, 4087–4099.

    Article  Google Scholar 

  • Kuipers, H., Wijnen, J. A., Hartgens, F., & Willems, S. M. (1991). Influence of anabolic steroids on body composition, blood pressure, lipid profile and liver functions in body builders. International Journal of Sports Medicine, 12(4), 413–418.

    Article  CAS  PubMed  Google Scholar 

  • Laron, Z., & Kowadlo-Silbergeld, A. (1965). Effect of testosterone and methandrostenolone (dianabol) on plasma free fatty acids in intact female and castrated male rats. Israel Journal of Medical Sciences, 1, 91.

    CAS  PubMed  Google Scholar 

  • Merrill, A. H, Jr., Wang, E., Innis, W. S. A., & Mullins, R. (1985). Increases in serum sphingomyelin by 17β-estradiol. Lipids, 20(4), 252–254.

    Article  CAS  PubMed  Google Scholar 

  • Nebbia, C., Urbani, A., Carletti, M., Gardini, G., Balbo, A., Bertarelli, D., & Girolami, F. (2011). Novel strategies for tracing the exposure of meat cattle to illegal growth-promoters. The Veterinary Journal, 189, 34–42.

    Article  CAS  PubMed  Google Scholar 

  • Nzoughet, J. K., Dervilly-Pinel, G., Chéreau, S., Biancotto, G., Monteau, F., Elliott, C., & Le Bizec, B. (2015). First insights into serum metabolomics of Revalor-XS® implanted bovines; Screening model to predict hormone-treated and control animals’ status. Metabolomics,. doi:10.1007/s11306-015-0775-x.

    Google Scholar 

  • Ogiso, H., Suzuki, T., & Taguchi, R. (2008). Development of a reverse-phase liquid chromatography electrospray ionization mass spectrometry method for lipidomics, improving detection of phosphatidic acid and phosphatidylserine. Analytical Biochemistry, 375(124–131), 1820. doi:10.1016/j.ab.2007.12.027.6977.

    Google Scholar 

  • Okazaki, Y., Kamide, Y., Hirai, M. Y., & Saito, K. (2013). Plant lipidomics based on hydrophilic interaction chromatography coupled to ion trap time-of-flight mass spectrometry. Metabolomics, 9(Suppl 1), 121–131. doi:10.1007/s11306-011-0318-z.

    Article  CAS  PubMed  Google Scholar 

  • Pinel, G., Weigel, S., Antignac, J.-P., Mooney, M. H., Elliott, C., Nielen, M. W. F., & Le Bizec, B. (2010). Targeted and untargeted profiling of biological fluids to screen for anabolic practices in cattle. Trends in Analytical Chemistry, 29(11), 1269–1280.

    Article  CAS  Google Scholar 

  • Roberts, L. D., McCombie, G., Titman, C. M., & Griffin, J. L. (2008). A matter of fat: An introduction to lipidomic profiling methods. Journal of Chromatography B, 871, 174–181.

    Article  CAS  Google Scholar 

  • Rubinow, K. B., & Page, S. T. (2012). Testosterone, HDL and cardiovascular risk in men. Clinical Lipidology, 7(4), 363–365.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching and identification. Analytical Chemistry, 78, 779–787.

    Article  CAS  PubMed  Google Scholar 

  • Solyom, A. (1971). Effect of androgens on serum lipids and lipoproteins. Lipids, 7(2), 100–104.

    Article  Google Scholar 

  • Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., et al. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3(3), 211–221.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tautenhahn, R., Böttcher, C., & Neumann, S. (2008). Highly sensitive feature detection for high resolution LC/MS. BMC Bioinformatics, 9, 504.

    Article  PubMed Central  PubMed  Google Scholar 

  • Vorkas, P. A., Isaac, G., Anwar, M. A., Davies, A. H., Want, E. J., & Holmes, E. (2015). Untargeted UPLC-MS profiling pipeline to expand tissue metabolome coverage: Application to cardiovascular disease. Analytical Chemistry,. doi:10.1021/ac503775m.

    PubMed Central  PubMed  Google Scholar 

  • Wenk, M. R. (2005). The emerging field of lipidomics. Nature Reviews Drug Discovery, 4, 594–610.

    Article  CAS  PubMed  Google Scholar 

  • Wiesner, P., Leidl, K., Boettcher, A., Schmitz, G., & Liebisch, G. (2009). Lipid profiling of FPLC-separated lipoprotein fractions by electrospray ionization tandem mass spectrometry. Journal of Lipid Research, 50, 574–585.

    Article  CAS  PubMed  Google Scholar 

  • Xia, J., & Wishart, D. S. (2010). MetPA: A web-based metabolomics tool for pathway analysis and visualization. Bioinformatics, 26(18), 2342–2344. doi:10.1093/bioinformatics/btq418.

    Article  CAS  PubMed  Google Scholar 

  • Yonezawa, Y., Hada, T., Uryu, K., Iijima, H., Yoshida, H., & Mizushina, Y. (2006). Inhibitory action of c22-fatty acids on DNA polymerases and DNA topoisomerases. International Journal of Molecular Medicine, 18(583–588), 583.

    CAS  PubMed  Google Scholar 

  • Zuliani, U., Bernardini, B., Catapano, A., Campana, M., Cerioli, G., & Spattini, M. (1989). Effects of anabolic steroids, testosterone, and HGH on blood lipids and echocardiographic parameters in body builders. International Journal of Sports Medicine, 10(1), 62–66.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Italian Ministry of Health (RF-IZV-2008-1175188) and the French Région Pays de la Loire. Dr Judith Kouassi Nzoughet was a fellowship recipient of Région Pays de la Loire (Projet acronym: Metaboscreen, Contract No 2011-12706). Thanks to Merck Animal Health that kindly supplied the ear implants Revalor-XS®. Authors would like to thank Dr Gilles Simard for useful discussion on the biological pathway.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Dervilly-Pinel.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Research involving Human and Animal Rights

All institutional and national guidelines for the care and use of laboratory animals were followed. Animals were managed according to Directive 86/609/EEC for the protection of animals used for experimental or other scientific purposes, enforced by the Italian D. Lgs No 116 of January 27, 1992 and Directive 63/2010. The animal study was approved by the Animal Experimentation Ethical Committee of the University of Bologna and was therefore performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 243 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nzoughet, J.K., Gallart-Ayala, H., Biancotto, G. et al. Hydrophilic interaction (HILIC) and reverse phase liquid chromatography (RPLC)–high resolution MS for characterizing lipids profile disruption in serum of anabolic implanted bovines. Metabolomics 11, 1884–1895 (2015). https://doi.org/10.1007/s11306-015-0847-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-015-0847-y

Keywords

Navigation