Skip to main content
Log in

Expanding lipidomics coverage: effective ultra performance liquid chromatography-high resolution mass spectrometer methods for detection and quantitation of cardiolipin, phosphatidylglycerol, and lysyl-phosphatidylglycerol

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Lipidomics can reveal global alterations in a broad class of molecules whose functions are innately linked to physiology. Monitoring changes in the phospholipid composition of biological membranes in response to stressors can aid the development of targeted therapies. However, exact quantitation of cardiolipins is not a straightforward task due to low ionization efficiencies and poor chromatographic separation of these compounds.

Objective

The aim of this study was to develop a quantitative method for the detection of cardiolipins and other phospholipids using both a targeted and untargeted analyses with a Q-Exactive.

Methods

HILIC chromatography and high-resolution mass spectrometry with parallel reaction monitoring was used to measure changes in lipid concentration. Internal standards and fragmentation techniques allowed for the reliable quantitation of lipid species including: lysyl-phosphatidylglycerol, phosphatidylglycerol, and cardiolipin.

Results

The untargeted analysis was capable to detecting 6 different phospholipid classes as well as free fatty acids. The targeted analysis quantified up to 23 cardiolipins, 10 phosphatidylglycerols and 10 lysyl-phosphatidylglycerols with detection limits as low as 50 nM. Biological validation with Enterococcus faecalis demonstrates sensitivity in monitoring the incorporation of exogenously supplied free fats into membrane phospholipids. When supplemented with oleic acid, the amount of free oleic acid in the membrane was 100 times greater and the concentration of polyunsaturated cardiolipin increased to over 3.5 µM compared to controls.

Conclusions

This lipidomics method is capable of targeted quantitation for challenging biologically relevant cardiolipins as well as broad, untargeted lipid profiling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bao, Y., Sakinc, T., Laverde, D., Wobser, D., Benachour, A., Theilacker, C., et al. (2012). Role of mprF1 and mprF2 in the pathogenicity of Enterococcus faecalis. PLoS ONE, 7, e38458.

    Article  CAS  Google Scholar 

  • Beate, F., & Jürgen, S. (2009). Application of MALDI-TOF mass spectrometry in lipidomics. European Journal of Lipid Science and Technology, 111, 83–98.

    Article  Google Scholar 

  • Beney, L., & Gervais, P. (2001). Influence of the fluidity of the membrane on the response of microorganisms to environmental stresses. Applied Microbiology and Biotechnology, 57, 34–42.

    Article  CAS  Google Scholar 

  • Bird, S. S., Marur, V. R., Sniatynski, M. J., Greenberg, H. K., & Kristal, B. S. (2011). Lipidomics profiling by high-resolution LC–MS and high-energy collisional dissociation fragmentation: Focus on characterization of mitochondrial cardiolipins and monolysocardiolipins. Analytical Chemistry, 83, 940–949.

    Article  CAS  Google Scholar 

  • Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911–917.

    Article  CAS  Google Scholar 

  • Chapman, D. J., De-Felice, J., & Barber, J. (1985). Characteristics of chloroplast thylakoid lipid composition associated with resistance to triazine herbicides. Planta, 166, 280–285.

    Article  CAS  Google Scholar 

  • Clasquin, M. F., Eugene, M., & Rabinowitz, D. J. (2012). LC-MS data processing with MAVEN: A metabolomic analysis and visualization engine. Current Protocols in Bioinformatics, 37, 14.11.1–14.11.23.

    Google Scholar 

  • Cronan, J. E. (2003). Bacterial membrane lipids: Where do we stand? Annual Review of Microbiology, 57, 203–224.

    Article  CAS  Google Scholar 

  • Dörmann, P., & Benning, C. (2002). Galactolipids rule in seed plants. Trends in Plant Science, 7, 112–118.

    Article  Google Scholar 

  • Dowhan, W. (1997). Molecular basis for membrane phospholipid diversity: Why are there so many lipids? Annual Review of Biochemistry, 66, 199–232.

    Article  CAS  Google Scholar 

  • Fahy, E., Subramaniam, S., Murphy, R. C., Nishijima, M., Raetz, C. R. H., Shimizu, T., et al. (2009). Update of the LIPID MAPS comprehensive classification system for lipids. Journal of Lipid Research, 50, S9–S14.

    Article  Google Scholar 

  • Fozo, E. M., & Rucks, E. A. (2016) Chapter two—The making and taking of lipids: The role of bacterial lipid synthesis and the harnessing of host lipids in bacterial pathogenesis. In R. K. Poole (Ed.), Advances in microbial physiology (pp. 51–155) Academic Press.

  • Hamilton, J. A., & Kamp, F. (1999). How are free fatty acids transported in membranes? Is it by proteins or by free diffusion through the lipids? Diabetes, 48, 2255–2269.

    Article  CAS  Google Scholar 

  • Harp, J. R., Saito, H. E., Bourdon, A. K., Reyes, J., Arias, C. A., Campagna, S. R., et al. (2016). Exogenous fatty acids protect Enterococcus faecalis from daptomycin-induced membrane stress independently of the response regulator LiaR. Applied and Environmental Microbiology, 82, 4410–4420.

    Article  CAS  Google Scholar 

  • Hines, K. M., Waalkes, A., Penewit, K., Holmes, E. A., Salipante, S. J., Werth, B. J., et al. (2017). Characterization of the mechanisms of daptomycin resistance among gram-positive bacterial pathogens by multidimensional lipidomics. mSphere, 2, e00492.

    Article  Google Scholar 

  • Holman, J. D., Tabb, D. L., & Mallick, P. (2014). Employing proteowizard to convert raw mass spectrometry data. Current Protocols in Bioinformatics, 46, 13241–13249.

    Article  Google Scholar 

  • Iverson, S. J., Lang, S. L., & Cooper, M. H. (2001). Comparison of the bligh and dyer and folch methods for total lipid determination in a broad range of marine tissue. Lipids, 36, 1283–1287.

    Article  CAS  Google Scholar 

  • Joo, H.-S., & Otto, M. (2015). Mechanisms of resistance to antimicrobial peptides in staphylococci. Biochimica et Biophysica Acta (BBA)—Biomembranes, 1848, 3055–3061.

    Article  CAS  Google Scholar 

  • Kessner, D., Chambers, M., Burke, R., Agus, D., & Mallick, P. (2008). ProteoWizard: Open source software for rapid proteomics tools development. Bioinformatics, 24, 2534–2536.

    Article  CAS  Google Scholar 

  • Kilelee, E., Pokorny, A., Yeaman, M. R., & Bayer, A. S. (2010). Lysyl-phosphatidylglycerol attenuates membrane perturbation rather than surface association of the cationic antimicrobial peptide 6 W-RP-1 in a model membrane system: implications for daptomycin resistance. Antimicrobial Agents and Chemotherapy, 54, 4476–4479.

    Article  CAS  Google Scholar 

  • Klausner, R. D., Kleinfeld, A. M., Hoover, R. L., & Karnovsky, M. J. (1980). Lipid domains in membranes. Evidence derived from structural perturbations induced by free fatty acids and lifetime heterogeneity analysis. Journal of Biological Chemistry, 255, 1286–1295.

    CAS  PubMed  Google Scholar 

  • Minkler, P. E., & Hoppel, C. L. (2010). Separation and characterization of cardiolipin molecular species by reverse-phase ion pair high-performance liquid chromatography-mass spectrometry. Journal of Lipid Research, 51, 856–865.

    Article  CAS  Google Scholar 

  • Mishra, N. N., Bayer, A. S., Tran, T. T., Shamoo, Y., Mileykovskaya, E., Dowhan, W., et al. (2012). Daptomycin resistance in enterococci is associated with distinct alterations of cell membrane phospholipid content. PLoS ONE, 7, e43958.

    Article  CAS  Google Scholar 

  • Nishi, H., Komatsuzawa, H., Fujiwara, T., McCallum, N., & Sugai, M. (2004). Reduced content of lysyl-phosphatidylglycerol in the cytoplasmic membrane affects susceptibility to moenomycin, as well as vancomycin, gentamicin, and antimicrobial peptides, in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 48, 4800–4807.

    Article  CAS  Google Scholar 

  • Oliver, P. M., Crooks, J. A., Leidl, M., Yoon, E. J., Saghatelian, A., & Weibel, D. B. (2014). Localization of anionic phospholipids in Escherichia coli cells. Journal of Bacteriology, 196, 3386–3398.

    Article  Google Scholar 

  • Olofsson, G., & Sparr, E. (2013). Ionization constants pKa of cardiolipin. PLoS ONE, 8, e73040.

    Article  CAS  Google Scholar 

  • Rashid, R., Cazenave-Gassiot, A., Gao, I. H., Nair, Z. J., Kumar, J. K., Gao, L., et al. (2017). Comprehensive analysis of phospholipids and glycolipids in the opportunistic pathogen Enterococcus faecalis. PLoS ONE, 12, e0175886.

    Article  Google Scholar 

  • Renner, L. D., & Weibel, D. B. (2011). Cardiolipin microdomains localize to negatively curved regions of  Escherichia coli membranes. Proceedings of the National Academy of Sciences, 108, 6264–6269.

    Article  CAS  Google Scholar 

  • Romantsov, T., Guan, Z., & Wood, J. M. (2009). Cardiolipin and the osmotic stress responses of bacteria. Biochimica et Biophysica Acta (BBA)—Biomembranes, 1788, 2092–2100.

    Article  CAS  Google Scholar 

  • Saito, H. E., Harp, J. R., & Fozo, E. M. (2014). Incorporation of exogenous fatty acids protects Enterococcus faecalis from membrane-damaging agents. Applied and Environmental Microbiology, 80, 6527–6538.

    Article  Google Scholar 

  • Saito, H. E., Harp, J. R., & Fozo, E. M. (2018). Enterococcus faecalis responds to individual exogenous fatty acids independently of their degree of saturation or chain length. Applied and Environmental Microbiology, 84, e01633.

    PubMed  Google Scholar 

  • Scherer, M., Schmitz, G., & Liebisch, G. (2010). Simultaneous quantification of cardiolipin, bis(monoacylglycero)phosphate and their precursors by hydrophilic interaction LC–MS/MS including correction of isotopic overlap. Analytical Chemistry, 82, 8794–8799.

    Article  CAS  Google Scholar 

  • Schwalbe-Herrmann, M., Willmann, J., & Leibfritz, D. (2010). Separation of phospholipid classes by hydrophilic interaction chromatography detected by electrospray ionization mass spectrometry. Journal of Chromatography A, 1217, 5179–5183.

    Article  CAS  Google Scholar 

  • Sohlenkamp, C., & Geiger, O. (2016). Bacterial membrane lipids: Diversity in structures and pathways. FEMS Microbiology Reviews, 40, 133–159.

    Article  CAS  Google Scholar 

  • Sprott, G. D., Larocque, S., Cadotte, N., Dicaire, C. J., McGee, M., & Brisson, J. R. (2003). Novel polar lipids of halophilic eubacterium Planococcus H8 and archaeon Haloferax volcanii. Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids, 1633, 179–188.

    CAS  Google Scholar 

  • Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., et al. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3, 211–221.

    Article  CAS  Google Scholar 

  • Tran, T. T., Panesso, D., Mishra, N. N., Mileykovskaya, E., Guan, Z., Munita, J. M., et al. (2013). Daptomycin-resistant Enterococcus faecalis diverts the antibiotic molecule from the division septum and remodels cell membrane phospholipids. mBio, 4, e00281.

    Article  Google Scholar 

  • Valianpour, F., Wanders, R. J. A., Barth, P. G., Overmars, H., & van Gennip, A. H. (2002). Quantitative and compositional study of cardiolipin in platelets by electrospray ionization mass spectrometry: Application for the identification of barth syndrome patients. Clinical Chemistry, 48, 1390–1397.

    CAS  PubMed  Google Scholar 

  • Van Mooy, B. A. S., Fredricks, H. F., Pedler, B. E., Dyhrman, S. T., Karl, D. M., Koblížek, M., et al. (2009). Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature, 458, 69.

    Article  Google Scholar 

  • Watson, A. D. (2006). Thematic review series: Systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: A global approach to lipid analysis in biological systems. Journal of Lipid Research, 47, 2101–2111.

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to acknowledge the National Institute of Health (NIH) Grant #R01 AI116571-03 for financial support.

Author information

Authors and Affiliations

Authors

Contributions

EDT, SRC, and EMF designed the project. EDT and BMW designed and conducted targeted analysis. EDT and ATF designed and conducted the untargeted analysis. JRH grew and extracted lipids from the bacteria. EDT, BMW, JRH, SRC, and EMF wrote the manuscript. All authors read and approved the manuscript. Mass spectrometric analyses were performed at the University of Tennessee, Knoxville Biological and Small Molecule Mass Spectrometry Core with the assistance of Dr. Hector F. Castro.

Corresponding author

Correspondence to Shawn R. Campagna.

Ethics declarations

Conflict of interest

The authors declares that he/she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 660 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tague, E.D., Woodall, B.M., Harp, J.R. et al. Expanding lipidomics coverage: effective ultra performance liquid chromatography-high resolution mass spectrometer methods for detection and quantitation of cardiolipin, phosphatidylglycerol, and lysyl-phosphatidylglycerol. Metabolomics 15, 53 (2019). https://doi.org/10.1007/s11306-019-1512-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-019-1512-7

Keywords

Navigation