Skip to main content
Log in

Annotating unknown components from GC/EI-MS-based metabolite profiling experiments using GC/APCI(+)-QTOFMS

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

GC/EI-MS-based metabolite profiling of derivatized polar fractions of crude plant extracts typically reveals several hundred components. Thereof, only up to one half can be identified using mass spectral and retention index libraries, the rest remains unknown. In the present work, the utility of GC/APCI(+)-QTOFMS for the annotation of unknown components was explored. Hence, EI and APCI(+) mass spectra of ~100 known components were extracted from GC/EI-QMS and GC/APCI(+)-QTOFMS profiles obtained from a methoximated and trimethylsilylated root extract of Arabidopsis thaliana. Based on this reference set, adduct and fragment ion formation under APCI(+) conditions was examined and the calculation of elemental compositions evaluated. During these studies, most of the components formed dominating protonated molecular ions. Despite the high mass accuracy (|Δm| ≤ 3 mDa) and isotopic pattern accuracy (mSigma ≤ 30) the determination of a component’s unique native elemental composition requires additional information, namely the number of trimethylsilyl and methoxime moieties as well as the analysis of corresponding collision-induced dissociation (CID) mass spectra. After all, the reference set was used to develop a strategy for the pairwise assignment of EI and APCI(+) mass spectra. Proceeding from these findings, the annotation of unidentified components detected by GC/EI-QMS using GC/APCI(+)-QTOFMS and corresponding deuterated derivatization reagents was attempted. For a total of 25 unknown components, pairs of EI and APCI(+) mass spectra were compiled and elemental compositions determined. Integrative interpretation of EI and CID mass spectra resulted in 14 structural hypotheses, of which seven were confirmed using authenticated standards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amirav, A., Gordin, A., Poliak, M., & Fialkov, A. B. (2008). Gas chromatography–mass spectrometry with supersonic molecular beams. Journal of Mass Spectrometry, 43, 141–163.

    Article  CAS  PubMed  Google Scholar 

  • Bellostas, N., Sorensen, A. D., Sorensen, J. C., & Sorensen, H. (2008). Fe2+-catalyzed formation of nitriles and thionamides from intact glucosinolates. Journal of Natural Products, 71, 76–80.

    Article  CAS  PubMed  Google Scholar 

  • Birkemeyer, C., Luedemann, A., Wagner, C., Erban, A., & Kopka, J. (2005). Metabolome analysis: The potential of in vivo labeling with stable isotopes for metabolite profiling. Trends in Biotechnology, 23, 28–33.

    Article  CAS  PubMed  Google Scholar 

  • Brenner, N., Haapala, M., Vuorensola, K., & Kostiainen, R. (2008). Simple coupling of gas chromatography to electrospray ionization mass spectrometry. Analytical Chemistry, 80, 8334–8339.

    Article  CAS  PubMed  Google Scholar 

  • Bristow, T., Harrison, M., & Sims, M. (2010). The application of gas chromatography/atmospheric pressure chemical ionisation time-of-flight mass spectrometry to impurity identification in Pharmaceutical Development. Rapid Communications in Mass Spectrometry, 24, 1673–1681.

    Article  CAS  PubMed  Google Scholar 

  • Carrasco-Pancorbo, A., Nevedomskaya, E., Arthen-Engeland, T., Zey, T., Zurek, G., Baessmann, C., et al. (2009). Gas chromatography/atmospheric pressure chemical ionization-time of flight mass spectrometry: Analytical validation and applicability to metabolic profiling. Analytical Chemistry, 81, 10071–10079.

    Article  CAS  PubMed  Google Scholar 

  • Dunn, W., Erban, A., Weber, R. M., Creek, D., Brown, M., Breitling, R., et al. (2013). Mass appeal: metabolite identification in mass spectrometry-focused untargeted metabolomics. Metabolomics, 9, S44–S66.

    Article  Google Scholar 

  • Dunn, W. B. (2008). Current trends and future requirements for the mass spectrometric investigation of microbial, mammalian and plant metabolomes. Physical Biology, 5, 011001.

    Article  PubMed  Google Scholar 

  • Dunn, W. B., Broadhurst, D., Begley, P., Zelena, E., Francis-McIntyre, S., Anderson, N., et al. (2011). Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nature Protocols, 6, 1060–1083.

    Article  CAS  PubMed  Google Scholar 

  • Fiehn, O., Kopka, J., Dormann, P., Altmann, T., Trethewey, R. N., & Willmitzer, L. (2000a). Metabolite profiling for plant functional genomics. Nature Biotechnology, 18, 1157–1161.

    Article  CAS  PubMed  Google Scholar 

  • Fiehn, O., Kopka, J., Trethewey, R. N., & Willmitzer, L. (2000b). Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Analytical Chemistry, 72, 3573–3580.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Villalba, R., Pacchiarotta, T., Carrasco-Pancorbo, A., Segura-Carretero, A., Fernandez-Gutierrez, A., Deelder, A. M., et al. (2011). Gas chromatography-atmospheric pressure chemical ionization-time of flight mass spectrometry for profiling of phenolic compounds in extra virgin olive oil. Journal of Chromatography A, 1218, 959–971.

    Article  CAS  PubMed  Google Scholar 

  • Halket, J. M., & Zaikin, V. G. (2003). Derivatization in mass spectrometry-1. Silylation. European Journal of Mass Spectrometry, 9, 1–21.

    Article  CAS  PubMed  Google Scholar 

  • Herebian, D., Hanisch, B., & Marner, F. J. (2005). Strategies for gathering structural information on unknown peaks in the GC/MS analysis of Corynebacterium glutamicum cell extracts. Metabolomics, 1, 317–324.

    Article  CAS  Google Scholar 

  • Horning, E. C., Horning, M. G., Carroll, D. I., Dzidic, I., & Stillwell, R. N. (1973). New picogram detection system based on a mass spectrometer with an external ionization source at atmospheric pressure. Analytical Chemistry, 45, 936–943.

    Article  CAS  Google Scholar 

  • Hummel, J., Selbig, J., Walther, D., & Kopka, J. (2007). The Golm Metabolome Database: A database for GC-MS based metabolite profiling. Topics in Current Genetics, 18, 75–95.

    Article  CAS  Google Scholar 

  • Hummel, J., Strehmel, N., Selbig, J., Walther, D., & Kopka, J. (2010). Decision tree supported substructure prediction of metabolites from GC-MS profiles. Metabolomics, 6, 322–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kind, T., Wohlgemuth, G., Lee, D. Y., Lu, Y., Palazoglu, M., Shahbaz, S., et al. (2009). FiehnLib: Mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Analytical Chemistry, 81, 10038–10048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konishi, Y., Kiyota, T., Draghici, C., Gao, J. M., Yeboah, F., Acoca, S., et al. (2007). Molecular formula analysis by an MS/MS/MS technique to expedite dereplication of natural products. Analytical Chemistry, 79, 1187–1197.

    Article  CAS  PubMed  Google Scholar 

  • Kopka, J. (2006). Current challenges and developments in GC-MS based metabolite profiling technology. Journal of Biotechnology, 124, 312–322.

    Article  CAS  PubMed  Google Scholar 

  • Kopka, J., Schauer, N., Krueger, S., Birkemeyer, C., Usadel, B., Bergmuller, E., et al. (2005). GMD@CSB.DB: The Golm Metabolome Database. Bioinformatics, 21, 1635–1638.

    Article  CAS  PubMed  Google Scholar 

  • Kumari, S., Stevens, D., Kind, T., Denkert, C., & Fiehn, O. (2011). Applying in-silico retention index and mass spectra matching for identification of unknown metabolites in accurate mass gc-tof mass spectrometry. Analytical Chemistry, 83, 5895–5902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lisec, J., Schauer, N., Kopka, J., Willmitzer, L., & Fernie, A. R. (2006). Gas chromatography mass spectrometry-based metabolite profiling in plants. Nature Protocols, 1, 387–396.

    Article  CAS  PubMed  Google Scholar 

  • McEwen, C. N., & McKay, R. G. (2005). A combination atmospheric pressure LC/MS:GC/MS ion source: Advantages of dual AP-LC/MS:GC/MS instrumentation. Journal of the American Society of Mass Spectrometry, 16, 1730–1738.

    Article  CAS  Google Scholar 

  • Pacchiarotta, T., Nevedomskaya, E., Carrasco-Pancorbo, A., Deelder, A. M., & Mayboroda, O. A. (2010). Evaluation of GC-APCI/MS and GC-FID as a complementary platform. Journal of Biomolecular Techniques, 21, 205–213.

    PubMed  PubMed Central  Google Scholar 

  • Pfalz, M., Vogel, H., & Kroymann, J. (2009). The gene controlling the indole glucosinolate modifier1 quantitative trait locus alters indole glucosinolate structures and aphid resistance in Arabidopsis. Plant Cell, 21, 985–999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Portoles, T., Sancho, J. V., Hernandez, F., Newton, A., & Hancock, P. (2010). Potential of atmospheric pressure chemical ionization source in GC-QTOF MS for pesticide residue analysis. Journal of Mass Spectrometry, 45, 926–936.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez, D. H., Szymanski, J., Erban, A., Udvardi, M. K., & Kopka, J. (2010). Mining for robust transcriptional and metabolic responses to long-term salt stress: a case study on the model legume Lotus japonicus. Plant, Cell and Environment, 33, 468–480.

    Article  CAS  PubMed  Google Scholar 

  • Schauer, N., Steinhauser, D., Strelkov, S., Schomburg, D., Allison, G., Moritz, T., et al. (2005). GC-MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Letters, 579, 1332–1337.

    Article  CAS  PubMed  Google Scholar 

  • Schiewek, R., Lorenz, M., Giese, R., Brockmann, K., Benter, T., Gab, S., et al. (2008). Development of a multipurpose ion source for LC-MS and GC-API MS. Analytical and Bioanalytical Chemistry, 392, 87–96.

    Article  CAS  PubMed  Google Scholar 

  • Steinfath, M., Strehmel, N., Peters, R., Schauer, N., Groth, D., Hummel, J., et al. (2010). Discovering plant metabolic biomarkers for phenotype prediction using an untargeted approach. Plant Biotechnology Journal, 8, 900–911.

    Article  CAS  PubMed  Google Scholar 

  • Strehmel, N., Hummel, J., Erban, A., Strassburg, K., & Kopka, J. (2008). Retention index thresholds for compound matching in GC-MS metabolite profiling. Journal of Chromatography B, 871, 182–190.

    Article  CAS  Google Scholar 

  • von Wiren, N., Romheld, V., Shioiri, T., & Marschner, H. (1995). Competition between microorganisms and roots of barley and sorghum for iron accumulated in the root apoplasm. New Phytologist, 130, 511–521.

    Article  Google Scholar 

  • Wachsmuth, C. J., Almstetter, M. F., Waldhier, M. C., Gruber, M. A., Nurnberger, N., Oefner, P. J., et al. (2011). Performance evaluation of gas chromatography-atmospheric pressure chemical ionization-time-of-flight mass spectrometry for metabolic fingerprinting and profiling. Analytical Chemistry, 83, 7514–7522.

    Article  CAS  PubMed  Google Scholar 

  • Warren, C. (2013). Use of chemical ionization for GC–MS metabolite profiling. Metabolomics, 9, S110–S120.

    Article  Google Scholar 

  • Zimmermann, R., Welthagen, W., & Groger, T. (2008). Photo-ionisation mass spectrometry as detection method for gas chromatography. Optical selectivity and multidimensional comprehensive separations. Journal of Chromatography A, 1184, 296–308.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Böttcher.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strehmel, N., Kopka, J., Scheel, D. et al. Annotating unknown components from GC/EI-MS-based metabolite profiling experiments using GC/APCI(+)-QTOFMS. Metabolomics 10, 324–336 (2014). https://doi.org/10.1007/s11306-013-0569-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-013-0569-y

Keywords

Navigation