Skip to main content
Log in

Electron-activated dissociation (EAD) for the complementary annotation of metabolites and lipids through data-dependent acquisition analysis and feature-based molecular networking, applied to the sentinel amphipod Gammarus fossarum

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The past decades have marked the rise of metabolomics and lipidomics as the -omics sciences which reflect the most phenotypes in living systems. Mass spectrometry–based approaches are acknowledged for both quantification and identification of molecular signatures, the latter relying primarily on fragmentation spectra interpretation. However, the high structural diversity of biological small molecules poses a considerable challenge in compound annotation. Feature-based molecular networking (FBMN) combined with database searches currently sets the gold standard for annotation of large datasets. Nevertheless, FBMN is usually based on collision-induced dissociation (CID) data, which may lead to unsatisfying information. The use of alternative fragmentation methods, such as electron-activated dissociation (EAD), is undergoing a re-evaluation for the annotation of small molecules, as it gives access to additional fragmentation routes. In this study, we apply the performances of data-dependent acquisition mass spectrometry (DDA-MS) under CID and EAD fragmentation along with FBMN construction, to perform extensive compound annotation in the crude extracts of the freshwater sentinel organism Gammarus fossarum. We discuss the analytical aspects of the use of the two fragmentation modes, perform a general comparison of the information delivered, and compare the CID and EAD fragmentation pathways for specific classes of compounds, including previously unstudied species. In addition, we discuss the potential use of FBMN constructed with EAD fragmentation spectra to improve lipid annotation, compared to the classic CID-based networks. Our approach has enabled higher confidence annotations and finer structure characterization of 823 features, including both metabolites and lipids detected in G. fossarum extracts.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All the data are described within the manuscript. The raw data and metadata analyzed during the current study are available from the corresponding author on request.

References

  1. Vailati-Riboni M, Palombo V, Loor JJ. What are omics sciences? In: Periparturient diseases of dairy cows. Cham: Springer International Publishing; 2017. p. 1–7.

    Google Scholar 

  2. Wang R, Li B, Lam SM, Shui G. Integration of lipidomics and metabolomics for in-depth understanding of cellular mechanism and disease progression. J Genet Genomics. 2020;47:69–83. https://doi.org/10.1016/j.jgg.2019.11.009.

    Article  CAS  PubMed  Google Scholar 

  3. Gallart‐Ayala H, Teav T, Ivanisevic J. Metabolomics meets lipidomics: assessing the small molecule component of metabolism. BioEssays. 2020;42. https://doi.org/10.1002/bies.202000052.

  4. Guijas C, Montenegro-Burke JR, Warth B, Spilker ME, Siuzdak G. Metabolomics activity screening for identifying metabolites that modulate phenotype. Nat Biotechnol. 2018;36:316–20. https://doi.org/10.1038/nbt.4101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Heiles S. Advanced tandem mass spectrometry in metabolomics and lipidomics—methods and applications. Anal Bioanal Chem. 2021;413:5927–48. https://doi.org/10.1007/s00216-021-03425-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rakusanova S, Fiehn O, Cajka T. Toward building mass spectrometry-based metabolomics and lipidomics atlases for biological and clinical research. TrAC Trends Anal Chem. 2023;158:116825. https://doi.org/10.1016/j.trac.2022.116825.

    Article  CAS  Google Scholar 

  7. Ribbenstedt A, Ziarrusta H, Benskin JP. Development, characterization and comparisons of targeted and non-targeted metabolomics methods. PLoS One. 2018;13:e0207082. https://doi.org/10.1371/journal.pone.0207082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gertsman I, Barshop BA. Promises and pitfalls of untargeted metabolomics. J Inherit Metab Dis. 2018;41:355–66. https://doi.org/10.1007/s10545-017-0130-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Deschamps E, Calabrese V, Schmitz I, Hubert-Roux M, Castagnos D, Afonso C. Advances in ultra-high-resolution mass spectrometry for pharmaceutical analysis. Molecules. 2023;28:2061. https://doi.org/10.3390/molecules28052061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chaleckis R, Meister I, Zhang P, Wheelock CE. Challenges, progress and promises of metabolite annotation for LC–MS-based metabolomics. Curr Opin Biotechnol. 2019;55:44–50. https://doi.org/10.1016/j.copbio.2018.07.010.

    Article  CAS  PubMed  Google Scholar 

  11. Guo J, Huan T. Comparison of full-scan, data-dependent, and data-independent acquisition modes in liquid chromatography–mass spectrometry based untargeted metabolomics. Anal Chem. 2020;92:8072–80. https://doi.org/10.1021/acs.analchem.9b05135.

    Article  CAS  PubMed  Google Scholar 

  12. Wang R, Yin Y, Zhu Z-J. Advancing untargeted metabolomics using data-independent acquisition mass spectrometry technology. Anal Bioanal Chem. 2019;411:4349–57. https://doi.org/10.1007/s00216-019-01709-1.

    Article  CAS  PubMed  Google Scholar 

  13. Barbier Saint Hilaire P, Rousseau K, Seyer A, Dechaumet S, Damont A, Junot C, Fenaille F. Comparative evaluation of data dependent and data independent acquisition workflows implemented on an Orbitrap Fusion for untargeted metabolomics. Metabolites. 2020;10:158. https://doi.org/10.3390/metabo10040158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K, Kanazawa M, VanderGheynst J, Fiehn O, Arita M. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods. 2015;12:523–6. https://doi.org/10.1038/nmeth.3393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yin Y, Wang R, Cai Y, Wang Z, Zhu Z-J. DecoMetDIA: deconvolution of multiplexed MS/MS spectra for metabolite identification in SWATH-MS-based untargeted metabolomics. Anal Chem. 2019;91:11897–904. https://doi.org/10.1021/acs.analchem.9b02655.

    Article  CAS  PubMed  Google Scholar 

  16. Stancliffe E, Schwaiger-Haber M, Sindelar M, Patti GJ. DecoID improves identification rates in metabolomics through database-assisted MS/MS deconvolution. Nat Methods. 2021;18:779–87. https://doi.org/10.1038/s41592-021-01195-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tada I, Chaleckis R, Tsugawa H, Meister I, Zhang P, Lazarinis N, Dahlén B, Wheelock CE, Arita M. Correlation-based deconvolution (CorrDec) to generate high-quality MS2 spectra from data-independent acquisition in multisample studies. Anal Chem. 2020;92:11310–7. https://doi.org/10.1021/acs.analchem.0c01980.

    Article  CAS  PubMed  Google Scholar 

  18. Alseekh S, Aharoni A, Brotman Y, Contrepois K, D’Auria J, Ewald J, Ewald CJ, Fraser PD, Giavalisco P, Hall RD, Heinemann M, Link H, Luo J, Neumann S, Nielsen J, Perez de Souza L, Saito K, Sauer U, Schroeder FC, Schuster S, Siuzdak G, Skirycz A, Sumner LW, Snyder MP, Tang H, Tohge T, Wang Y, Wen W, Wu S, Xu G, Zamboni N, Fernie AR. Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices. Nat Methods. 2021;18:747–56. https://doi.org/10.1038/s41592-021-01197-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hoskisson PA, Seipke RF. Cryptic or silent? The known unknowns, unknown knowns, and unknown unknowns of secondary metabolism. mBio. 2020;11. https://doi.org/10.1128/mBio.02642-20.

  20. Little JL, Cleven CD, Brown SD. Identification of “known unknowns” utilizing accurate mass data and chemical abstracts service databases. J Am Soc Mass Spectrom. 2011;22:348–59. https://doi.org/10.1007/s13361-010-0034-3.

    Article  CAS  PubMed  Google Scholar 

  21. Little JL, Williams AJ, Pshenichnov A, Tkachenko V. Identification of “known unknowns” utilizing accurate mass data and ChemSpider. J Am Soc Mass Spectrom. 2012;23:179–85. https://doi.org/10.1007/s13361-011-0265-y.

    Article  CAS  PubMed  Google Scholar 

  22. Perez De Souza L, Alseekh S, Brotman Y, Fernie AR. Network-based strategies in metabolomics data analysis and interpretation: from molecular networking to biological interpretation. Expert Rev Proteomics. 2020;17:243–55. https://doi.org/10.1080/14789450.2020.1766975.

    Article  CAS  PubMed  Google Scholar 

  23. Phelan VV. Feature-based molecular networking for metabolite annotation. 2020;227–243.

  24. Nothias L-F, Petras D, Schmid R, Dührkop K, Rainer J, Sarvepalli A, Protsyuk I, Ernst M, Tsugawa H, Fleischauer M, Aicheler F, Aksenov AA, Alka O, Allard P-M, Barsch A, Cachet X, Caraballo-Rodriguez AM, Da Silva RR, Dang T, Garg N, Gauglitz JM, Gurevich A, Isaac G, Jarmusch AK, Kameník Z, Bin KK, Kessler N, Koester I, Korf A, Le Gouellec A, Ludwig M, Martin HC, McCall L-I, McSayles J, Meyer SW, Mohimani H, Morsy M, Moyne O, Neumann S, Neuweger H, Nguyen NH, Nothias-Esposito M, Paolini J, Phelan VV, Pluskal T, Quinn RA, Rogers S, Shrestha B, Tripathi A, van der Hooft JJJ, Vargas F, Weldon KC, Witting M, Yang H, Zhang Z, Zubeil F, Kohlbacher O, Böcker S, Alexandrov T, Bandeira N, Wang M, Dorrestein PC. Feature-based molecular networking in the GNPS analysis environment. Nat Methods. 2020;17:905–8. https://doi.org/10.1038/s41592-020-0933-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Quinn RA, Nothias L-F, Vining O, Meehan M, Esquenazi E, Dorrestein PC. Molecular networking as a drug discovery, drug metabolism, and precision medicine strategy. Trends Pharmacol Sci. 2017;38:143–54. https://doi.org/10.1016/j.tips.2016.10.011.

    Article  CAS  PubMed  Google Scholar 

  26. Olivon F, Elie N, Grelier G, Roussi F, Litaudon M, Touboul D. MetGem software for the generation of molecular networks based on the t-SNE algorithm. Anal Chem. 2018;90:13900–8. https://doi.org/10.1021/acs.analchem.8b03099.

    Article  CAS  PubMed  Google Scholar 

  27. Elie N, Santerre C, Touboul D. Generation of a molecular network from electron ionization mass spectrometry data by combining MZmine2 and MetGem software. Anal Chem. 2019;91:11489–92. https://doi.org/10.1021/acs.analchem.9b02802.

    Article  CAS  PubMed  Google Scholar 

  28. Neto FC, Raftery D. Expanding urinary metabolite annotation through integrated mass spectral similarity networking. Anal Chem. 2021;93:12001–10. https://doi.org/10.1021/acs.analchem.1c02041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Le Daré B, Ferron P-J, Allard P-M, Clément B, Morel I, Gicquel T. New insights into quetiapine metabolism using molecular networking. Sci Rep. 2020;10:19921. https://doi.org/10.1038/s41598-020-77106-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hayes RN, Gross ML. [10] Collision-induced dissociation. 1990;237–263.

  31. Martín-Sómer A, Yáñez M, Gaigeot M-P, Spezia R. Unimolecular fragmentation induced by low-energy collision: statistically or dynamically driven? J Phys Chem A. 2014;118:10882–93. https://doi.org/10.1021/jp5076059.

    Article  CAS  PubMed  Google Scholar 

  32. Zhou Z, Luo M, Chen X, Yin Y, Xiong X, Wang R, Zhu Z-J. Ion mobility collision cross-section atlas for known and unknown metabolite annotation in untargeted metabolomics. Nat Commun. 2020;11:4334. https://doi.org/10.1038/s41467-020-18171-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Calabrese V, Schmitz-Afonso I, Prevost C, Afonso C, Elomri A. Molecular networking and collision cross section prediction for structural isomer and unknown compound identification in plant metabolomics: a case study applied to Zhanthoxylum heitzii extracts. Anal Bioanal Chem. 2022;414:4103–18. https://doi.org/10.1007/s00216-022-04059-7.

    Article  CAS  PubMed  Google Scholar 

  34. An N, Zhu Q-F, Wang Y-Z, Xiong C-F, Hu Y-N, Feng Y-Q. Integration of chemical derivatization and in-source fragmentation mass spectrometry for high-coverage profiling of submetabolomes. Anal Chem. 2021;93:11321–8. https://doi.org/10.1021/acs.analchem.1c02673.

    Article  CAS  PubMed  Google Scholar 

  35. Kato S, Shimizu N, Ogura Y, Otoki Y, Ito J, Sakaino M, Sano T, Kuwahara S, Takekoshi S, Imagi J, Nakagawa K. Structural analysis of lipid hydroperoxides using mass spectrometry with alkali metals. J Am Soc Mass Spectrom. 2021;32:2399–409. https://doi.org/10.1021/jasms.1c00039.

    Article  CAS  PubMed  Google Scholar 

  36. Gass DT, Quintero AV, Hatvany JB, Gallagher ES. Metal adduction in mass spectrometric analyses of carbohydrates and glycoconjugates. Mass Spectrom Rev. 2022. https://doi.org/10.1002/mas.21801.

    Article  PubMed  Google Scholar 

  37. Poyer S, Laboureur L, Hebra T, Elie N, Van der Rest G, Salpin J-Y, Champy P, Touboul D. Dereplication of acetogenins from Annona muricata by combining tandem mass spectrometry after lithium and copper postcolumn cationization and molecular networks. J Am Soc Mass Spectrom. 2022;33:627–34. https://doi.org/10.1021/jasms.1c00303.

    Article  CAS  PubMed  Google Scholar 

  38. Qi Y, Volmer DA. Structural analysis of small to medium-sized molecules by mass spectrometry after electron-ion fragmentation (ExD) reactions. Analyst. 2016;141:794–806. https://doi.org/10.1039/C5AN02171E.

    Article  CAS  PubMed  Google Scholar 

  39. Lange M, Fedorova M. Evaluation of lipid quantification accuracy using HILIC and RPLC MS on the example of NIST® SRM® 1950 metabolites in human plasma. Anal Bioanal Chem. 2020;412:3573–84. https://doi.org/10.1007/s00216-020-02576-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tang D, Zou L, Yin X, Ong CN. HILIC-MS for metabolomics: an attractive and complementary approach to RPLC-MS. Mass Spectrom Rev. 2016;35:574–600. https://doi.org/10.1002/mas.21445.

    Article  CAS  PubMed  Google Scholar 

  41. Laboureur L, Ollero M, Touboul D. Lipidomics by supercritical fluid chromatography. Int J Mol Sci. 2015;16:13868–84. https://doi.org/10.3390/ijms160613868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. van de Velde B, Guillarme D, Kohler I. Supercritical fluid chromatography – Mass spectrometry in metabolomics: past, present, and future perspectives. J Chromatogr B. 2020;1161:122444. https://doi.org/10.1016/j.jchromb.2020.122444.

    Article  CAS  Google Scholar 

  43. Cody RB, Freiser BS. Electron impact excitation of ions from organics: an alternative to collision induced dissociation. Anal Chem. 1979;51:547–51. https://doi.org/10.1021/ac50040a022.

    Article  CAS  Google Scholar 

  44. Cody RB, Freiser BS. Electron impact excitation of ions in Fourier transform mass spectrometry. Anal Chem. 1987;59:1054–6. https://doi.org/10.1021/ac00134a026.

    Article  CAS  Google Scholar 

  45. Baba T, Ryumin P, Duchoslav E, Chen K, Chelur A, Loyd B, Chernushevich I. Dissociation of biomolecules by an intense low-energy electron beam in a high sensitivity time-of-flight mass spectrometer. J Am Soc Mass Spectrom. 2021;32:1964–75. https://doi.org/10.1021/jasms.0c00425.

    Article  CAS  PubMed  Google Scholar 

  46. Campbell JL, Baba T. Near-complete structural characterization of phosphatidylcholines using electron impact excitation of ions from organics. Anal Chem. 2015;87:5837–45. https://doi.org/10.1021/acs.analchem.5b01460.

    Article  CAS  PubMed  Google Scholar 

  47. Baba T, Campbell JL, Le Blanc JCY, Baker PRS. In-depth sphingomyelin characterization using electron impact excitation of ions from organics and mass spectrometry. J Lipid Res. 2016;57:858–67. https://doi.org/10.1194/jlr.M067199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Baba T, Campbell JL, Le Blanc JCY, Baker PRS. Structural identification of triacylglycerol isomers using electron impact excitation of ions from organics (EIEIO). J Lipid Res. 2016;57:2015–27. https://doi.org/10.1194/jlr.M070177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Baba T, Campbell JL, Le Blanc JCY, Baker PRS. Structural identification of eicosanoids with ring structures using differential mobility spectrometry–electron impact excitation of ions from organics mass spectrometry. J Am Soc Mass Spectrom. 2023;34:75–81. https://doi.org/10.1021/jasms.2c00256.

    Article  CAS  PubMed  Google Scholar 

  50. Baba T, Campbell JL, Le Blanc JCY, Baker PRS. Distinguishing cis and trans isomers in intact complex lipids using electron impact excitation of ions from organics mass spectrometry. Anal Chem. 2017;89:7307–15. https://doi.org/10.1021/acs.analchem.6b04734.

    Article  CAS  PubMed  Google Scholar 

  51. Ducati AO, Ruskic D, Sosnowski P, Baba T, Bonner R, Hopfgartner G. Improved metabolite characterization by liquid chromatography – tandem mass spectrometry through electron impact type fragments from adduct ions. Anal Chim Acta. 2021;1150:338207. https://doi.org/10.1016/j.aca.2021.338207.

    Article  CAS  PubMed  Google Scholar 

  52. Che P, Davidson JT, Kool J, Kohler I. Electron activated dissociation - a complementary fragmentation technique to collision-induced dissociation for metabolite identification of synthetic cathinone positional isomers. Anal Chim Acta. 2023;1283:341962. https://doi.org/10.1016/j.aca.2023.341962.

    Article  CAS  PubMed  Google Scholar 

  53. Marzullo BP, Morgan TE, Wootton CA, Li M, Perry SJ, Saeed M, Barrow MP, O’Connor PB. Comparison of fragmentation techniques for the structural characterization of singly charged agrochemicals. Anal Chem. 2020;92:3143–51. https://doi.org/10.1021/acs.analchem.9b04820.

    Article  CAS  PubMed  Google Scholar 

  54. Weiss M, Macher JN, Seefeldt MA, Leese F. Molecular evidence for further overlooked species within the Gammarus fossarum complex (Crustacea: Amphipoda). Hydrobiologia. 2014;721:165–84. https://doi.org/10.1007/s10750-013-1658-7.

    Article  CAS  Google Scholar 

  55. Chaumot A, Geffard O, Armengaud J, Maltby L. Gammarids as reference species for freshwater monitoring. In: Aquatic ecotoxicology. Elsevier, 2015;253–280.

  56. Calabrese V, Salvador A, Clément Y, Brunet TA, Espeyte A, Chaumot A, Geffard O, Degli-Esposti D, Ayciriex S. Challenges and perspectives in MS-based omics approaches for ecotoxicology studies: an insight on Gammarids sentinel amphipods. Front Anal Sci. 2023;3.

  57. Trapp J, Geffard O, Imbert G, Gaillard JC, Davin AH, Chaumot A, Armengaud J. Proteogenomics of gammarus fossarum to document the reproductive system of amphipods. Mol Cell Proteomics. 2014;13:3612–25. https://doi.org/10.1074/mcp.M114.038851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Trapp J, Armengaud J, Pible O, Gaillard JC, Abbaci K, Habtoul Y, Chaumot A, Geffard O. Proteomic investigation of male Gammarus fossarum, a freshwater crustacean, in response to endocrine disruptors. J Proteome Res. 2015;14:292–303. https://doi.org/10.1021/pr500984z.

    Article  CAS  PubMed  Google Scholar 

  59. Leprêtre M, Geffard O, Espeyte A, Faugere J, Ayciriex S, Salvador A, Delorme N, Chaumot A, Degli-Esposti D. Multiple reaction monitoring mass spectrometry for the discovery of environmentally modulated proteins in an aquatic invertebrate sentinel species. Gammarus Fossarum Environ Pollut. 2022;315:120393. https://doi.org/10.1016/j.envpol.2022.120393.

    Article  CAS  PubMed  Google Scholar 

  60. Faugere J, Gouveia D, Ayciriex S, Chaumot A, Almunia C, François A, Armengaud J, Lemoine J, Geffard O, Degli-Esposti D, Salvador A. High-multiplexed monitoring of protein biomarkers in the sentinel Gammarus fossarum by targeted scout-MRM assay, a new vision for ecotoxicoproteomics. J Proteomics. 2020;226:103901. https://doi.org/10.1016/j.jprot.2020.103901.

    Article  CAS  PubMed  Google Scholar 

  61. Gouveia D, Chaumot A, Charnot A, Almunia C, François A, Navarro L, Armengaud J, Salvador A, Geffard O. Ecotoxico-proteomics for aquatic environmental monitoring: first in situ application of a new proteomics-based multibiomarker assay using caged amphipods. Environ Sci Technol. 2017;51:13417–26. https://doi.org/10.1021/acs.est.7b03736.

    Article  CAS  PubMed  Google Scholar 

  62. Koenig N, Almunia C, Bonnal-Conduzorgues A, Armengaud J, Chaumot A, Geffard O, Esposti DD. Co-expression network analysis identifies novel molecular pathways associated with cadmium and pyriproxyfen testicular toxicity in Gammarus fossarum. Aquat Toxicol. 2021;235:105816. https://doi.org/10.1016/j.aquatox.2021.105816.

    Article  CAS  PubMed  Google Scholar 

  63. Cosio C, Degli-Esposti D, Almunia C, Gaillet V, Sartelet H, Armengaud J, Chaumot A, Geffard O, Geffard A. Subcellular distribution of dietary methyl-mercury in Gammarus fossarum and its impact on the amphipod proteome. Environ Sci Technol. 2021;55:10514–23. https://doi.org/10.1021/acs.est.1c02385.

    Article  CAS  PubMed  Google Scholar 

  64. Gismondi E, Thomé J-P, Urien N, Uher E, Baiwir D, Mazzucchelli G, De Pauw E, Fechner LC, Lebrun JD. Ecotoxicoproteomic assessment of the functional alterations caused by chronic metallic exposures in gammarids. Environ Pollut. 2017;225:428–38. https://doi.org/10.1016/j.envpol.2017.03.006.

    Article  CAS  PubMed  Google Scholar 

  65. Fu T, Knittelfelder O, Geffard O, Clément Y, Testet E, Elie N, Touboul D, Abbaci K, Shevchenko A, Lemoine J, Chaumot A, Salvador A, Degli-Esposti D, Ayciriex S. Shotgun lipidomics and mass spectrometry imaging unveil diversity and dynamics in Gammarus fossarum lipid composition. iScience. 2021;24:102115. https://doi.org/10.1016/j.isci.2021.102115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fu T, Oetjen J, Chapelle M, Verdu A, Szesny M, Chaumot A, Degli-Esposti D, Geffard O, Clément Y, Salvador A, Ayciriex S. In situ isobaric lipid mapping by MALDI–ion mobility separation–mass spectrometry imaging. J Mass Spectrom. 2020;55. https://doi.org/10.1002/jms.4531.

  67. Thomas Alexandre Brunet, Yohann Clément, Valentina Calabrese, Jérôme Lemoine, Olivier Geffard, Arnaud Chaumot, Davide Degli-Esposti, Arnaud Salvador, Sophie Ayciriex. Concomitant investigation of crustacean amphipods lipidome and metabolome during molting stage by Zeno SWATH Data-Independent Acquisition coupled with Electron Activated Dissociation and machine learning. Biorxiv Preprint. 2023.

  68. Faugere J, Brunet TA, Clément Y, Espeyte A, Geffard O, Lemoine J, Chaumot A, Degli-Esposti D, Ayciriex S, Salvador A. Development of a multi-omics extraction method for ecotoxicology: investigation of the reproductive cycle of Gammarus fossarum. Talanta. 2023;253:123806. https://doi.org/10.1016/j.talanta.2022.123806.

    Article  CAS  PubMed  Google Scholar 

  69. Negri P, Krotulski A. Enhancing high-resolution mass spectrometry performance for NPS analysis with improved sensitivity and characterization. Toxicol Anal Clin. 2022;34:S149. https://doi.org/10.1016/j.toxac.2022.06.251.

    Article  Google Scholar 

  70. Katajamaa M, Miettinen J, Orešič M. MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics. 2006;22:634–6. https://doi.org/10.1093/bioinformatics/btk039.

    Article  CAS  PubMed  Google Scholar 

  71. Pluskal T, Castillo S, Villar-Briones A, Orešič M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics. 2010;11:395. https://doi.org/10.1186/1471-2105-11-395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Schmid R, Heuckeroth S, Korf A, Smirnov A, Myers O, Dyrlund TS, Bushuiev R, Murray KJ, Hoffmann N, Lu M, Sarvepalli A, Zhang Z, Fleischauer M, Dührkop K, Wesner M, Hoogstra SJ, Rudt E, Mokshyna O, Brungs C, Ponomarov K, Mutabdžija L, Damiani T, Pudney CJ, Earll M, Helmer PO, Fallon TR, Schulze T, Rivas-Ubach A, Bilbao A, Richter H, Nothias L-F, Wang M, Orešič M, Weng J-K, Böcker S, Jeibmann A, Hayen H, Karst U, Dorrestein PC, Petras D, Du X, Pluskal T. Integrative analysis of multimodal mass spectrometry data in MZmine 3. Nat Biotechnol. 2023;41:447–9. https://doi.org/10.1038/s41587-023-01690-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dührkop K, Fleischauer M, Ludwig M, Aksenov AA, Melnik AV, Meusel M, Dorrestein PC, Rousu J, Böcker S. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat Methods. 2019;16:299–302. https://doi.org/10.1038/s41592-019-0344-8.

    Article  CAS  PubMed  Google Scholar 

  74. Böcker S, Letzel MC, Lipták Z, Pervukhin A. SIRIUS: decomposing isotope patterns for metabolite identification. Bioinformatics. 2009;25:218–24. https://doi.org/10.1093/bioinformatics/btn603.

    Article  CAS  PubMed  Google Scholar 

  75. Dührkop K, Shen H, Meusel M, Rousu J, Böcker S. Searching molecular structure databases with tandem mass spectra using CSI:FingerID. Proc Natl Acad Sci. 2015;112:12580–5. https://doi.org/10.1073/pnas.1509788112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan TW-M, Fiehn O, Goodacre R, Griffin JL, Hankemeier T, Hardy N, Harnly J, Higashi R, Kopka J, Lane AN, Lindon JC, Marriott P, Nicholls AW, Reily MD, Thaden JJ, Viant MR. Proposed minimum reporting standards for chemical analysis. Metabolomics. 2007;3:211–21. https://doi.org/10.1007/s11306-007-0082-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lester R, Carey MC, Little JM, Cooperatein LA, Dowd SR. Crustacean intestinal detergent promotes sterol solubilization. Science (1979). 1975;189:1098–100. https://doi.org/10.1126/science.1162360.

    Article  CAS  Google Scholar 

  78. Holwerda DA, Vonk HJ. Emulsifiers in the intestinal juice of crustacea. Isolation and nature of surface-active substances from Astacus leptodactylus Esch. and Homarus vulgaris L. Comp Biochem Physiol Part B Comp Biochem. 1973;45:51–8. https://doi.org/10.1016/0305-0491(73)90283-6.

    Article  CAS  Google Scholar 

  79. Yamashita Y, Yamashita M. Identification of a novel selenium-containing compound, selenoneine, as the predominant chemical form of organic selenium in the blood of bluefin tuna. J Biol Chem. 2010;285:18134–8. https://doi.org/10.1074/jbc.C110.106377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Belzile N, Chen Y-W, Gunn JM, Tong J, Alarie Y, Delonchamp T, Lang C-Y. The effect of selenium on mercury assimilation by freshwater organisms. Can J Fish Aquat Sci. 2006;63:1–10. https://doi.org/10.1139/f05-202.

    Article  CAS  Google Scholar 

  81. Walter Helbling E, Fernando Menchi C, Villafañe VE. Bioaccumulation and role of UV-absorbing compounds in two marine crustacean species from Patagonia, Argentina. Photochem Photobiol Sci. 2002;1:820–5. https://doi.org/10.1039/b206584c.

    Article  CAS  PubMed  Google Scholar 

  82. Gouveia D, Pible O, Culotta K, Jouffret V, Geffard O, Chaumot A, Degli-Esposti D, Armengaud J. Combining proteogenomics and metaproteomics for deep taxonomic and functional characterization of microbiomes from a non-sequenced host. NPJ Biofilms Microbiomes. 2020;6. https://doi.org/10.1038/s41522-020-0133-2.

  83. Godchaux W, Leadbetter ER. Sulfonolipids of gliding bacteria. Structure of the N-acylaminosulfonates. J Biol Chem. 1984;259:2982–90. https://doi.org/10.1016/S0021-9258(17)43246-7.

    Article  CAS  PubMed  Google Scholar 

  84. Walker A, Pfitzner B, Harir M, Schaubeck M, Calasan J, Heinzmann SS, Turaev D, Rattei T, Endesfelder D, Castell zu W, Haller D, Schmid M, Hartmann A, Schmitt-Kopplin P. Sulfonolipids as novel metabolite markers of Alistipes and Odoribacter affected by high-fat diets. Sci Rep. 2017;7:11047. https://doi.org/10.1038/s41598-017-10369-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Alegado RA, Brown LW, Cao S, Dermenjian RK, Zuzow R, Fairclough SR, Clardy J, King N. A bacterial sulfonolipid triggers multicellular development in the closest living relatives of animals. Elife. 2012;1. https://doi.org/10.7554/eLife.00013.

  86. Cordell GA, Lamahewage SNS. Ergothioneine, ovothiol A, and selenoneine—histidine-derived, biologically significant, trace global alkaloids. Molecules. 2022;27:2673. https://doi.org/10.3390/molecules27092673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Christophersen C, Anthoni U. Organic sulfur compounds from marine organisms. Sulfur Rep. 1986;4:365–442. https://doi.org/10.1080/01961778608082487.

    Article  CAS  Google Scholar 

  88. Rosenstock HM, Wallenstein MB, Wahrhaftig AL, Eyring H. Absolute rate theory for isolated systems and the mass spectra of polyatomic molecules. Proc Natl Acad Sci. 1952;38:667–78. https://doi.org/10.1073/pnas.38.8.667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fu T, Oetjen J, Chapelle M, Verdu A, Szesny M, Chaumot A, Degli‐Esposti D, Geffard O, Clément Y, Salvador A, Ayciriex S. In situ isobaric lipid mapping by MALDI–ion mobility separation–mass spectrometry imaging. J Mass Spectrom. 2020;55. https://doi.org/10.1002/jms.4531.

Download references

Funding

This work was supported by the French National Research Agency (ANR) (young investigator grant, ANR-18-CE34-0008 PLAN-TOX). VC was supported by a post-doctoral fellowship of the SENS research funding of the Université Claude Bernard Lyon 1. This work was performed within the framework of the EUR H2O’Lyon (ANR-17-EURE-0018) of Université de Lyon (UdL), within the program “Investissements d’Avenir” operated by the French National Research Agency (ANR). We thank the French GDR “Aquatic Ecotoxicology” framework which aims at fostering stimulating discussions and collaborations for more integrative approaches.

Author information

Authors and Affiliations

Authors

Contributions

VC: conceptualization; methodology; formal analysis; investigation; data analysis; visualization; writing—original draft. TAB: methodology, investigation. DDE: writing—review and editing. AC, OG: resources; writing—review and editing. AS: writing—review and editing. YC: resources; writing—review and editing. SA: conceptualization; funding acquisition; supervision; writing—original draft; writing—review and editing.

Corresponding authors

Correspondence to Valentina Calabrese or Sophie Ayciriex.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ABC Highlights: authored by Rising Stars and Top Experts.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4007 KB)

Supplementary file2 (XLSX 158 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calabrese, V., Brunet, T.A., Degli-Esposti, D. et al. Electron-activated dissociation (EAD) for the complementary annotation of metabolites and lipids through data-dependent acquisition analysis and feature-based molecular networking, applied to the sentinel amphipod Gammarus fossarum. Anal Bioanal Chem 416, 2893–2911 (2024). https://doi.org/10.1007/s00216-024-05232-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-024-05232-w

Keywords

Navigation