Skip to main content
Log in

Effects of hyperbaric oxygen on uric acid and arachidonic acid: a metabolomic study in rats and humans

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Hyperoxia is routinely used to prevent or treat hypoxemia and acute respiratory failure, and sustain aerobic life in military and commercial operations. However, breathing oxygen acutely at high pressures and for long durations is toxic. The present study aimed to investigate effects of hyperbaric oxygen (HBO) exposure on plasma metabolite profiles. We applied a liquid chromatography-mass spectrometry based metabolomic approach to analyze metabolites from plasma of both rats and humans under HBO conditions to explore the possible effects of HBO on the body. Uric acid (UA) and arachidonic acid concentrations were changed significantly in both rat and human plasma, and some precursor metabolites of UA in the UA pathway were also changed. For acute and chronic HBO exposures on plasma UA after exogenous UA injection, the results indicated exogenous administration of UA significantly increased plasma UA and ascorbic acid levels. However, these returned to normal levels 48 h after HBO exposure. These findings suggest HBO exposure can combat the harmful effects of increased UA from exposure to elevated partial pressure of oxygen. Furthermore, exogenous administration of UA not only does not disturb its metabolism, but also increases its anti-oxidative capacity (increase ascorbic acid). These findings suggest that the use of antioxidants might be necessary under HBO exposure, especially under extreme HBO exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ANOVA:

Analyses of variance

AA:

Arachidonic acid

ATA:

Atmosphere absolute

CNS:

Central nervous system

EPA:

Eicosapentaenoic acid

ESI:

Electrospray ionization

FA:

Fatty acid

HBO:

Hyperbaric oxygen

LC-MS:

Liquid chromatography-mass spectrometry

NADPH:

Nicotinamide adenine dinucleotide phosphate

OPLS:

Orthogonal partial least squares

PC:

Principle component

PLS-DA:

Partial least squares-discriminate analysis

Q-TOF-MS:

Quadrupole time-of-flight mass spectrometry

ROS:

Reactive oxygen species

RT:

Retention time

TIC:

Total ion chromatography

UPLC-MS:

Ultra-performance liquid chromatography-mass spectrometry

UA:

Uric acid

XDH:

Xanthine dehydrogenase

XOR:

Xanthine oxidoreductase

References

  • Auten, R. L., & Davis J. M. (2009). Oxygen toxicity and reactive oxygen species: The devil is in the details. Pediatric Research, 66, 121–127.

    Article  CAS  PubMed  Google Scholar 

  • Bitterman, N. (2004). CNS oxygen toxicity. Undersea and Hyperbaric Medicine, 31, 63–72.

    CAS  PubMed  Google Scholar 

  • Cutler, R. G. (1984). Antioxidants, aging, and longevity. Free radicals in Biology, VI, 371–428.

    Google Scholar 

  • Gerschman, R., Gilbert, D. L., Nye, S. W., Dwyer, P., & Fenn, W. O. (1954). Oxygen poisoning and x-irradiation: A mechanism in common. Science, 119, 623–626.

    Article  CAS  PubMed  Google Scholar 

  • Harrison, R. (2002). Structure and function of xanthine oxidoreductase: Where are we now? Free Radical Biology and Medicine, 33, 774–797.

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa, T., & Kuroda, M. (1989). A new role of uric acid as an antioxidant in human plasma. Rinsho Byori, 37, 1020–1027.

    CAS  PubMed  Google Scholar 

  • Hink, H. U., Santanam, N., Dikalov, S., McCann, L., Nguyen, A. D., Parthasarathy, S., et al. (2002). Peroxidase properties of extracellular superoxide dismutase: Role of uric acid in modulating in vivo activity. Arteriosclerosis, Thrombosis, and Vascular Biology, 22, 1402–1408.

    Article  CAS  PubMed  Google Scholar 

  • Jackson, R. M. (1990). Molecular, pharmacologic, and clinical aspects of oxygen-induced lung injury. Clinics in Chest Medicine, 11, 73–86.

    CAS  PubMed  Google Scholar 

  • Jones, D. P. (2008). Radical-free biology of oxidative stress. American Journal of Physiology—Cell Physiology, 295, C849–C868.

    Article  CAS  PubMed  Google Scholar 

  • Kaur, H., & Halliwell, B. (1990). Action of biologically-relevant oxidizing species upon uric acid. Identification of uric acid oxidation products. Chemico-Biological Interactions, 73, 235–247.

    Article  CAS  PubMed  Google Scholar 

  • Kurt, B., Kurt, Y., Karslıoğlu, Y., Topal, T., Erdamar, H., Korkmaz, A., et al. (2008). Effects of hyperbaric oxygen on energy production and xanthine oxidase levels in striated muscle tissue of healthy rats. Journal of Clinical Neuroscience, 15(4), 445–450.

    Article  CAS  PubMed  Google Scholar 

  • Lee, P. J., & Choi, A. M. (2003). Pathways of cell signaling in hyperoxia. Free Radical Biology and Medicine, 35, 341–350.

    Article  CAS  PubMed  Google Scholar 

  • Lou, M., Zhang, H., Wang, J., Wen, S. Q., Tang, Z. Q., Chen, Y. Z., et al. (2007). Hyperbaric oxygen treatment attenuated the decrease in regional glucose metabolism of rats subjected to focal cerebral ischemia: A high resolution positron emission tomography study. Neuroscience, 146(2), 555–561.

    Article  CAS  PubMed  Google Scholar 

  • Sevanian, A., Davies, K. J., & Hochstein, P. (1991). Serum urate as an antioxidant for ascorbic acid. American Journal of Clinical Nutrition, 54, 1129S–1134S.

    CAS  PubMed  Google Scholar 

  • Simmonds, H. A. (1991). Hyperuricaemia. Lancet, 338, 184.

    Article  Google Scholar 

  • Simopoulos, A. P. (2006). Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases. Biomedicine and Pharmacotherapy, 60, 502–507.

    Article  CAS  Google Scholar 

  • Trygg, J., & Wold, S. (2002). Orthogonal projections to latent structures (O-PLS). Journal of Chemometrics, 16, 119–128.

    Article  CAS  Google Scholar 

  • van den Berg, R. A., Hoefsloot, H. C., Westerhuis, J. A., Smilde, A. K., & van der Werf, M. J. (2006). Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics, 7, 142.

    Article  PubMed  Google Scholar 

  • Villas-Boas, S. G., Rasmussen, S., & Lane, G. A. (2005). Metabolomics or metabolite profiles? Trends in Biotechnology, 23, 385–386.

    Article  CAS  PubMed  Google Scholar 

  • Waring, W. S., Webb, D. J., & Maxwell, S. R. (2001). Systemic uric acid administration increases serum antioxidant capacity in healthy volunteers. Journal of Cardiovascular Pharmacology, 38, 365–371.

    Article  CAS  PubMed  Google Scholar 

  • Wiklund, S., Johansson, E., Sjostrom, L., Mellerowicz, E. J., Edlund, U., Shockcor, J. P., et al. (2008). Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Analytical Chemistry, 80, 115–122.

    Article  CAS  PubMed  Google Scholar 

  • Wu, X. W., Muzny, D. M., Lee, C. C., & Caskey, C. T. (1992). Two independent mutational events in the loss of urate oxidase during hominoid evolution. Journal of Molecular Evolution, 34, 78–84.

    Article  CAS  PubMed  Google Scholar 

  • Zaher, T. E., Miller, E. J., Morrow, D. M., Javdan, M., & Mantell, L. L. (2007). Hyperoxia-induced signal transduction pathways in pulmonary epithelial cells. Free Radical Biology and Medicine, 42, 897–908.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the Military Eleventh Five-Year Plan Medicine Research Foundation (No. 08G066).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weigang Xu or Weidong Zhang.

Additional information

Xinru Liu and Wenwu Liu contributed equally to the work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 150 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Liu, W., Sun, X. et al. Effects of hyperbaric oxygen on uric acid and arachidonic acid: a metabolomic study in rats and humans. Metabolomics 6, 375–385 (2010). https://doi.org/10.1007/s11306-010-0210-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-010-0210-2

Keywords

Navigation