Skip to main content
Log in

Signaling pathways underlying the antidepressant-like effect of inosine in mice

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Inosine is a purine nucleoside formed by the breakdown of adenosine that elicits an antidepressant-like effect in mice through activation of adenosine A1 and A2A receptors. However, the signaling pathways underlying this effect are largely unknown. To address this issue, the present study investigated the influence of extracellular-regulated protein kinase (ERK)1/2, Ca2+/calmoduline-dependent protein kinase (CaMKII), protein kinase A (PKA), phosphoinositide 3-kinase (PI3K)/Akt, and glycogen synthase kinase 3beta (GSK-3β) modulation in the antiimmobility effect of inosine in the tail suspension test (TST) in mice. In addition, we attempted to verify if inosine treatment was capable of altering the immunocontent and phosphorylation of the transcription factor cyclic adenosine monophosphatate (cAMP) response-binding element protein (CREB) in mouse prefrontal cortex and hippocampus. Intracerebroventricular administration of U0126 (5 μg/mouse, MEK1/2 inhibitor), KN-62 (1 μg/mouse, CaMKII inhibitor), H-89 (1 μg/mouse, PKA inhibitor), and wortmannin (0.1 μg/mouse, PI3K inhibitor) prevented the antiimmobility effect of inosine (10 mg/kg, intraperitoneal (i.p.)) in the TST. Also, administration of a sub-effective dose of inosine (0.1 mg/kg, i.p.) in combination with a sub-effective dose of AR-A014418 (0.001 μg/mouse, GSK-3β inhibitor) induced a synergic antidepressant-like effect. None of the treatments altered locomotor activity of mice. Moreover, 24 h after a single administration of inosine (10 mg/kg, i.p.), CREB phosphorylation was increased in the hippocampus. Our findings provided new evidence that the antidepressant-like effect of inosine in the TST involves the activation of PKA, PI3K/Akt, ERK1/2, and CaMKII and the inhibition of GSK-3β. These results contribute to the comprehension of the mechanisms underlying the purinergic system modulation and indicate the intracellular signaling pathways involved in the antidepressant-like effect of inosine in a preclinical test of depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kaster MP, Moretti M, Cunha MP, Rodrigues AL (2016) Novel approaches for the management of depressive disorders. Eur J Pharmacol 771:236–240. doi:10.1016/j.ejphar.2015.12.029

    Article  CAS  PubMed  Google Scholar 

  2. Krishnan V, Nestler EJ (2008) The molecular neurobiology of depression. Nature 455(7215):894–902. doi:10.1038/nature07455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Papakostas GI, Ionescu DF (2016) Towards new mechanisms: an update on therapeutics for treatment-resistant major depressive disorder. Mol Psychiatry 20(10):1142–1150. doi:10.1038/mp.2015.92

    Article  Google Scholar 

  4. Nemeroff CB, Owens MJ (2002) Treatment of mood disorders. Nat Neurosci 5(Suppl):1068–1070. doi:10.1038/nn943

    Article  CAS  PubMed  Google Scholar 

  5. Ruhe HG, van Rooijen G, Spijker J, Peeters FP, Schene AH (2011) Staging methods for treatment resistant depression. A systematic review. J Affect Disord 137(1–3):35–45. doi:10.1016/j.jad.2011.02.020

    PubMed  Google Scholar 

  6. Kaster MP, Machado NJ, Silva HB, Nunes A, Ardais AP, Santana M, Baqi Y, Muller CE, Rodrigues AL, Porciuncula LO, Chen JF, Tome AR, Agostinho P, Canas PM, Cunha RA (2015) Caffeine acts through neuronal adenosine A2A receptors to prevent mood and memory dysfunction triggered by chronic stress. Proc Natl Acad Sci U S A 112(25):7833–7838. doi:10.1073/pnas.1423088112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ali-Sisto T, Tolmunen T, Toffol E, Viinamaki H, Mantyselka P, Valkonen-Korhonen M, Honkalampi K, Ruusunen A, Velagapudi V, Lehto SM (2016) Purine metabolism is dysregulated in patients with major depressive disorder. Psychoneuroendocrinology 70:25–32. doi:10.1016/j.psyneuen.2016.04.017

    Article  CAS  PubMed  Google Scholar 

  8. Ortiz R, Ulrich H, Zarate CA Jr, Machado-Vieira R (2014) Purinergic system dysfunction in mood disorders: a key target for developing improved therapeutics. Prog Neuro-Psychopharmacol Biol Psychiatry 57:117–131. doi:10.1016/j.pnpbp.2014.10.016

    Article  Google Scholar 

  9. Scaccianoce S, Navarra D, Di Sciullo A, Angelucci L, Endroczi E (1989) Adenosine and pituitary-adrenocortical axis activity in the rat. Neuroendocrinology 50(4):464–468

    Article  CAS  PubMed  Google Scholar 

  10. Okada M, Nutt DJ, Murakami T, Zhu G, Kamata A, Kawata Y, Kaneko S (2001) Adenosine receptor subtypes modulate two major functional pathways for hippocampal serotonin release. J Neurosci 21(2):628–640

    CAS  PubMed  Google Scholar 

  11. Kaster MP, Rosa AO, Rosso MM, Goulart EC, Santos AR, Rodrigues AL (2004) Adenosine administration produces an antidepressant-like effect in mice: evidence for the involvement of A1 and A2A receptors. Neurosci Lett 355(1–2):21–24

    Article  CAS  PubMed  Google Scholar 

  12. El Yacoubi M, Costentin J, Vaugeois JM (2003) Adenosine A2A receptors and depression. Neurology 61(11 Suppl 6):S82–S87

    Article  CAS  PubMed  Google Scholar 

  13. Minor TR, Rowe M, Cullen PK, Furst S (2008) Enhancing brain adenosine signaling with the nucleoside transport blocker NBTI (S-(4-nitrobenzyl)-6-theoinosine) mimics the effects of inescapable shock on later shuttle-escape performance in rats. Behav Neurosci 122(6):1236–1247. doi:10.1037/a0013143

    Article  CAS  PubMed  Google Scholar 

  14. Yamada K, Kobayashi M, Shiozaki S, Ohta T, Mori A, Jenner P, Kanda T (2014) Antidepressant activity of the adenosine A2A receptor antagonist, istradefylline (KW-6002) on learned helplessness in rats. Psychopharmacology 231(14):2839–2849. doi:10.1007/s00213-014-3454-0

    Article  CAS  PubMed  Google Scholar 

  15. Coelho JE, Alves P, Canas PM, Valadas JS, Shmidt T, Batalha VL, Ferreira DG, Ribeiro JA, Bader M, Cunha RA, do Couto FS, Lopes LV (2014) Overexpression of adenosine A2A receptors in rats: effects on depression, locomotion, and anxiety. Front Psychiatry 5:67. doi:10.3389/fpsyt.2014.00067

    Article  PubMed  PubMed Central  Google Scholar 

  16. Machado NJ, Simoes AP, Silva HB, Ardais AP, Kaster MP, Garcao P, Rodrigues DI, Pochmann D, Santos AI, Araujo IM, Porciuncula LO, Tome AR, Kofalvi A, Vaugeois JM, Agostinho P, El Yacoubi M, Cunha RA, Gomes CA (2016) Caffeine reverts memory but not mood impairment in a depression-prone mouse strain with up-regulated adenosine A2A receptor in hippocampal glutamate synapses. Mol Neurobiol. doi:10.1007/s12035-016-9774-9

    Google Scholar 

  17. Barankiewicz J, Cohen A (1985) Purine nucleotide metabolism in resident and activated rat macrophages in vitro. Eur J Immunol 15(6):627–631. doi:10.1002/eji.1830150618

    Article  CAS  PubMed  Google Scholar 

  18. Haun SE, Segeleon JE, Trapp VL, Clotz MA, Horrocks LA (1996) Inosine mediates the protective effect of adenosine in rat astrocyte cultures subjected to combined glucose-oxygen deprivation. J Neurochem 67(5):2051–2059

    Article  CAS  PubMed  Google Scholar 

  19. Cipriani S, Bakshi R, Schwarzschild MA (2014) Protection by inosine in a cellular model of Parkinson’s disease. Neuroscience 274:242–249. doi:10.1016/j.neuroscience.2014.05.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Muto J, Lee H, Uwaya A, Park J, Nakajima S, Nagata K, Ohno M, Ohsawa I, Mikami T (2014) Oral administration of inosine produces antidepressant-like effects in mice. Sci Rep 4:4199. doi:10.1038/srep04199

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wu MM, You SW, Hou B, Jiao XY, Li YY, Ju G (2003) Effects of inosine on axonal regeneration of axotomized retinal ganglion cells in adult rats. Neurosci Lett 341(1):84–86

    Article  CAS  PubMed  Google Scholar 

  22. Zurn AD, Do KQ (1988) Purine metabolite inosine is an adrenergic neurotrophic substance for cultured chicken sympathetic neurons. Proc Natl Acad Sci U S A 85(21):8301–8305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Benowitz LI, Goldberg DE, Irwin N (2002) Inosine stimulates axon growth in vitro and in the adult CNS. Prog Brain Res 137:389–399

    Article  CAS  PubMed  Google Scholar 

  24. Benowitz LI, Jing Y, Tabibiazar R, Jo SA, Petrausch B, Stuermer CA, Rosenberg PA, Irwin N (1998) Axon outgrowth is regulated by an intracellular purine-sensitive mechanism in retinal ganglion cells. J Biol Chem 273(45):29626–29634

    Article  CAS  PubMed  Google Scholar 

  25. Chen P, Goldberg DE, Kolb B, Lanser M, Benowitz LI (2002) Inosine induces axonal rewiring and improves behavioral outcome after stroke. Proc Natl Acad Sci U S A 99(13):9031–9036. doi:10.1073/pnas.132076299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nascimento FP, Figueredo SM, Marcon R, Martins DF, Macedo SJ Jr, Lima DA, Almeida RC, Ostroski RM, Rodrigues AL, Santos AR (2010) Inosine reduces pain-related behavior in mice: involvement of adenosine A1 and A2A receptor subtypes and protein kinase C pathways. J Pharmacol Exp Ther 334(2):590–598. doi:10.1124/jpet.110.166058

    Article  CAS  PubMed  Google Scholar 

  27. Macedo-Junior SJ, Nascimento FP, Luiz-Cerutti M, Santos AR (2012) Role of pertussis toxin-sensitive G-protein, K+ channels, and voltage-gated Ca2+ channels in the antinociceptive effect of inosine. Purinergic Signal 9(1):51–58. doi:10.1007/s11302-012-9327-2

    Article  PubMed  PubMed Central  Google Scholar 

  28. Markowitz CE, Spitsin S, Zimmerman V, Jacobs D, Udupa JK, Hooper DC, Koprowski H (2009) The treatment of multiple sclerosis with inosine. J Altern Complement Med 15(6):619–625. doi:10.1089/acm.2008.0513

    Article  PubMed  PubMed Central  Google Scholar 

  29. Schwarzschild MA, Ascherio A, Beal MF, Cudkowicz ME, Curhan GC, Hare JM, Hooper DC, Kieburtz KD, Macklin EA, Oakes D, Rudolph A, Shoulson I, Tennis MK, Espay AJ, Gartner M, Hung A, Bwala G, Lenehan R, Encarnacion E, Ainslie M, Castillo R, Togasaki D, Barles G, Friedman JH, Niles L, Carter JH, Murray M, Goetz CG, Jaglin J, Ahmed A, Russell DS, Cotto C, Goudreau JL, Russell D, Parashos SA, Ede P, Saint-Hilaire MH, Thomas CA, James R, Stacy MA, Johnson J, Gauger L, Antonelle de Marcaida J, Thurlow S, Isaacson SH, Carvajal L, Rao J, Cook M, Hope-Porche C, McClurg L, Grasso DL, Logan R, Orme C, Ross T, Brocht AF, Constantinescu R, Sharma S, Venuto C, Weber J, Eaton K (2013) Inosine to increase serum and cerebrospinal fluid urate in Parkinson disease: a randomized clinical trial. JAMA Neurol 71(2):141–150. doi:10.1001/jamaneurol.2013.5528

    Google Scholar 

  30. Bhattacharyya S, Bakshi R, Logan R, Ascherio A, Macklin EA, Schwarzschild MA (2016) Oral inosine persistently elevates plasma antioxidant capacity in Parkinson’s disease. Mov Disord 31(3):417–421. doi:10.1002/mds.26483

    Article  CAS  PubMed  Google Scholar 

  31. Nascimento FP, Macedo-Junior SJ, Pamplona FA, Luiz-Cerutti M, Cordova MM, Constantino L, Tasca CI, Dutra RC, Calixto JB, Reid A, Sawynok J, Santos AR (2014) Adenosine A1 receptor-dependent antinociception induced by inosine in mice: pharmacological, genetic and biochemical aspects. Mol Neurobiol. doi:10.1007/s12035-014-8815-5

    PubMed  Google Scholar 

  32. Welihinda AA, Kaur M, Greene K, Zhai Y, Amento EP (2016) The adenosine metabolite inosine is a functional agonist of the adenosine A2A receptor with a unique signaling bias. Cell Signal 28(6):552–560. doi:10.1016/j.cellsig.2016.02.010

    Article  CAS  PubMed  Google Scholar 

  33. Hasko G, Sitkovsky MV, Szabo C (2004) Immunomodulatory and neuroprotective effects of inosine. Trends Pharmacol Sci 25(3):152–157. doi:10.1016/j.tips.2004.01.006

    Article  CAS  PubMed  Google Scholar 

  34. Jin X, Shepherd RK, Duling BR, Linden J (1997) Inosine binds to A3 adenosine receptors and stimulates mast cell degranulation. J Clin Invest 100(11):2849–2857. doi:10.1172/JCI119833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gomez G, Sitkovsky MV (2003) Differential requirement for A2a and A3 adenosine receptors for the protective effect of inosine in vivo. Blood 102(13):4472–4478. doi:10.1182/blood-2002-11-3624

    Article  CAS  PubMed  Google Scholar 

  36. Kaster MP, Budni J, Gazal M, Cunha MP, Santos AR, Rodrigues AL (2013) The antidepressant-like effect of inosine in the FST is associated with both adenosine A1 and A2A receptors. Purinergic Signal 9(3):481–486. doi:10.1007/s11302-013-9361-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. D’Sa C, Duman RS (2002) Antidepressants and neuroplasticity. Bipolar Disord 4(3):183–194

    Article  PubMed  Google Scholar 

  38. Marsden WN (2012) Synaptic plasticity in depression: molecular, cellular and functional correlates. Prog Neuro-Psychopharmacol Biol Psychiatry 43:168–184. doi:10.1016/j.pnpbp.2012.12.012

    Article  Google Scholar 

  39. Duric V, Banasr M, Stockmeier CA, Simen AA, Newton SS, Overholser JC, Jurjus GJ, Dieter L, Duman RS (2012) Altered expression of synapse and glutamate related genes in post-mortem hippocampus of depressed subjects. Int J Neuropsychopharmacol 16(1):69–82. doi:10.1017/S1461145712000016

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yuan P, Zhou R, Wang Y, Li X, Li J, Chen G, Guitart X, Manji HK (2009) Altered levels of extracellular signal-regulated kinase signaling proteins in postmortem frontal cortex of individuals with mood disorders and schizophrenia. J Affect Disord 124(1–2):164–169. doi:10.1016/j.jad.2009.10.017

    PubMed  PubMed Central  Google Scholar 

  41. Reus GZ, Stringari RB, Ribeiro KF, Ferraro AK, Vitto MF, Cesconetto P, Souza CT, Quevedo J (2011) Ketamine plus imipramine treatment induces antidepressant-like behavior and increases CREB and BDNF protein levels and PKA and PKC phosphorylation in rat brain. Behav Brain Res 221(1):166–171. doi:10.1016/j.bbr.2011.02.024

    Article  CAS  PubMed  Google Scholar 

  42. Jacobson KA, Gao ZG (2006) Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 5(3):247–264. doi:10.1038/nrd1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu AM, Wong YH (2004) G16-mediated activation of nuclear factor kappaB by the adenosine A1 receptor involves c-Src, protein kinase C, and ERK signaling. J Biol Chem 279(51):53196–53204. doi:10.1074/jbc.M410196200

    Article  CAS  PubMed  Google Scholar 

  44. Manosso LM, Moretti M, Ribeiro CM, Goncalves FM, Leal RB, Rodrigues AL (2015) Antidepressant-like effect of zinc is dependent on signaling pathways implicated in BDNF modulation. Prog Neuro-Psychopharmacol Biol Psychiatry 59:59–67. doi:10.1016/j.pnpbp.2015.01.008

    Article  CAS  Google Scholar 

  45. Zeni AL, Zomkowski AD, Maraschin M, Rodrigues AL, Tasca CI (2012) Involvement of PKA, CaMKII, PKC, MAPK/ERK and PI3K in the acute antidepressant-like effect of ferulic acid in the tail suspension test. Pharmacol Biochem Behav 103(2):181–186. doi:10.1016/j.pbb.2012.08.020

    Article  CAS  PubMed  Google Scholar 

  46. Kaster MP, Gadotti VM, Calixto JB, Santos AR, Rodrigues AL (2011) Depressive-like behavior induced by tumor necrosis factor-alpha in mice. Neuropharmacology 62(1):419–426. doi:10.1016/j.neuropharm.2011.08.018

    Article  PubMed  Google Scholar 

  47. Goncalves FM, Freitas AE, Peres TV, Rieger DK, Ben J, Maestri M, Costa AP, Tramontina AC, Goncalves CA, Rodrigues AL, Nagano CS, Teixeira EH, Nascimento KS, Cavada BS, Leal RB (2013) Vatairea macrocarpa lectin (VML) induces depressive-like behavior and expression of neuroinflammatory markers in mice. Neurochem Res 38(11):2375–2384. doi:10.1007/s11064-013-1150-9

    Article  CAS  PubMed  Google Scholar 

  48. Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85(3):367–370

    Article  CAS  PubMed  Google Scholar 

  49. Cunha MP, Pazini FL, Rosa JM, Ramos-Hryb AB, Oliveira A, Kaster MP, Rodrigues AL (2015) Creatine, similarly to ketamine, affords antidepressant-like effects in the tail suspension test via adenosine A1 and A2A receptor activation. Purinergic Signal. doi:10.1007/s11302-015-9446-7

    Google Scholar 

  50. Neis VB, Moretti M, Manosso LM, Lopes MW, Leal RB, Rodrigues AL (2015) Agmatine enhances antidepressant potency of MK-801 and conventional antidepressants in mice. Pharmacol Biochem Behav 130:9–14. doi:10.1016/j.pbb.2014.12.009

    Article  CAS  PubMed  Google Scholar 

  51. Moretti M, Budni J, Freitas AE, Rosa PB, Rodrigues AL (2013) Antidepressant-like effect of ascorbic acid is associated with the modulation of mammalian target of rapamycin pathway. J Psychiatr Res 48(1):16–24. doi:10.1016/j.jpsychires.2013.10.014

    Article  PubMed  Google Scholar 

  52. Rodrigues AL, Rocha JB, Mello CF, Souza DO (1996) Effect of perinatal lead exposure on rat behaviour in open-field and two-way avoidance tasks. Pharmacol Toxicol 79(3):150–156

    Article  CAS  PubMed  Google Scholar 

  53. Neis VB, Moretti M, Bettio LE, Ribeiro CM, Rosa PB, Goncalves FM, Lopes MW, Leal RB, Rodrigues AL (2016) Agmatine produces antidepressant-like effects by activating AMPA receptors and mTOR signaling. Eur Neuropsychopharmacol 26(6):959–971. doi:10.1016/j.euroneuro.2016.03.009

    Article  CAS  PubMed  Google Scholar 

  54. Peres TV, Eyng H, Lopes SC, Colle D, Goncalves FM, Venske DK, Lopes MW, Ben J, Bornhorst J, Schwerdtle T, Aschner M, Farina M, Prediger RD, Leal RB (2015) Developmental exposure to manganese induces lasting motor and cognitive impairment in rats. Neurotoxicology 50:28–37. doi:10.1016/j.neuro.2015.07.005

    Article  CAS  PubMed  Google Scholar 

  55. Lopes MW, Lopes SC, Costa AP, Goncalves FM, Rieger DK, Peres TV, Eyng H, Prediger RD, Diaz AP, Nunes JC, Walz R, Leal RB (2015) Region-specific alterations of AMPA receptor phosphorylation and signaling pathways in the pilocarpine model of epilepsy. Neurochem Int 87:22–33. doi:10.1016/j.neuint.2015.05.003

    Article  CAS  PubMed  Google Scholar 

  56. Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83(2):346–356

    Article  CAS  PubMed  Google Scholar 

  57. Kovacs Z, Dobolyi A, Juhasz G, Kekesi KA (2009) Nucleoside map of the human central nervous system. Neurochem Res 35(3):452–464. doi:10.1007/s11064-009-0080-z

    Article  PubMed  Google Scholar 

  58. Wen S, Cheng M, Wang H, Yue J, Wang H, Li G, Zheng L, Zhong Z, Peng F (2012) Serum uric acid levels and the clinical characteristics of depression. Clin Biochem 45(1–2):49–53. doi:10.1016/j.clinbiochem.2011.10.010

    Article  CAS  PubMed  Google Scholar 

  59. Elgun S, Keskinege A, Kumbasar H (1999) Dipeptidyl peptidase IV and adenosine deaminase activity. Decrease in depression. Psychoneuroendocrinology 24(8):823–832

    Article  CAS  PubMed  Google Scholar 

  60. Shen H, Chen GJ, Harvey BK, Bickford PC, Wang Y (2005) Inosine reduces ischemic brain injury in rats. Stroke 36(3):654–659. doi:10.1161/01.STR.0000155747.15679.04

    Article  CAS  PubMed  Google Scholar 

  61. Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, Feeser WS, Van Dyk DE, Pitts WJ, Earl RA, Hobbs F, Copeland RA, Magolda RL, Scherle PA, Trzaskos JM (1998) Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem 273(29):18623–18632

    Article  CAS  PubMed  Google Scholar 

  62. Cheng P, Alberts I, Li X (2013) The role of ERK1/2 in the regulation of proliferation and differentiation of astrocytes in developing brain. Int J Dev Neurosci 31(8):783–789. doi:10.1016/j.ijdevneu.2013.09.008

    Article  CAS  PubMed  Google Scholar 

  63. Gourley SL, Wu FJ, Kiraly DD, Ploski JE, Kedves AT, Duman RS, Taylor JR (2008) Regionally specific regulation of ERK MAP kinase in a model of antidepressant-sensitive chronic depression. Biol Psychiatry 63(4):353–359. doi:10.1016/j.biopsych.2007.07.016

    Article  CAS  PubMed  Google Scholar 

  64. Liu D, Wang Z, Gao Z, Xie K, Zhang Q, Jiang H, Pang Q (2014) Effects of curcumin on learning and memory deficits, BDNF, and ERK protein expression in rats exposed to chronic unpredictable stress. Behav Brain Res 271:116–121. doi:10.1016/j.bbr.2014.05.068

    Article  CAS  PubMed  Google Scholar 

  65. Reus GZ, Vieira FG, Abelaira HM, Michels M, Tomaz DB, dos Santos MA, Carlessi AS, Neotti MV, Matias BI, Luz JR, Dal-Pizzol F, Quevedo J (2014) MAPK signaling correlates with the antidepressant effects of ketamine. J Psychiatr Res 55:15–21. doi:10.1016/j.jpsychires.2014.04.010

    Article  PubMed  Google Scholar 

  66. Duman CH, Schlesinger L, Kodama M, Russell DS, Duman RS (2007) A role for MAP kinase signaling in behavioral models of depression and antidepressant treatment. Biol Psychiatry 61(5):661–670. doi:10.1016/j.biopsych.2006.05.047

    Article  CAS  PubMed  Google Scholar 

  67. Celano E, Tiraboschi E, Consogno E, D’Urso G, Mbakop MP, Gennarelli M, de Bartolomeis A, Racagni G, Popoli M (2003) Selective regulation of presynaptic calcium/calmodulin-dependent protein kinase II by psychotropic drugs. Biol Psychiatry 53(5):442–449

    Article  CAS  PubMed  Google Scholar 

  68. Shonesy BC, Jalan-Sakrikar N, Cavener VS, Colbran RJ (2014) CaMKII: a molecular substrate for synaptic plasticity and memory. Prog Mol Biol Transl Sci 122:61–87. doi:10.1016/B978-0-12-420170-5.00003-9

    Article  CAS  PubMed  Google Scholar 

  69. Robison AJ (2014) Emerging role of CaMKII in neuropsychiatric disease. Trends Neurosci 37(11):653–662. doi:10.1016/j.tins.2014.07.001

    Article  CAS  PubMed  Google Scholar 

  70. Ethier MF, Madison JM (2006) Adenosine A1 receptors mediate mobilization of calcium in human bronchial smooth muscle cells. Am J Respir Cell Mol Biol 35(4):496–502. doi:10.1165/rcmb.2005-0290OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tiraboschi E, Giambelli R, D’Urso G, Galietta A, Barbon A, de Bartolomeis A, Gennarelli M, Barlati S, Racagni G, Popoli M (2004) Antidepressants activate CaMKII in neuron cell body by Thr286 phosphorylation. Neuroreport 15(15):2393–2396

    Article  CAS  PubMed  Google Scholar 

  72. Du J, Szabo ST, Gray NA, Manji HK (2004) Focus on CaMKII: a molecular switch in the pathophysiology and treatment of mood and anxiety disorders. Int J Neuropsychopharmacol 7(3):243–248. doi:10.1017/S1461145704004432

    Article  CAS  PubMed  Google Scholar 

  73. Sanchez-Nogueiro J, Marin-Garcia P, Bustillo D, Olivos-Ore LA, Miras-Portugal MT, Artalejo AR (2014) Subcellular distribution and early signalling events of P2X7 receptors from mouse cerebellar granule neurons. Eur J Pharmacol 744:190–202. doi:10.1016/j.ejphar.2014.10.036

    Article  CAS  PubMed  Google Scholar 

  74. North RA, Jarvis MF (2013) P2X receptors as drug targets. Mol Pharmacol 83(4):759–769. doi:10.1124/mol.112.083758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Almeida RC, Souza DG, Soletti RC, Lopez MG, Rodrigues AL, Gabilan NH (2006) Involvement of PKA, MAPK/ERK and CaMKII, but not PKC in the acute antidepressant-like effect of memantine in mice. Neurosci Lett 395(2):93–97. doi:10.1016/j.neulet.2005.10.057

    Article  CAS  PubMed  Google Scholar 

  76. Cunha MP, Budni J, Pazini FL, Oliveira A, Rosa JM, Lopes MW, Leal RB, Rodrigues AL (2014) Involvement of PKA, PKC, CAMK-II and MEK1/2 in the acute antidepressant-like effect of creatine in mice. Pharmacol Rep 66(4):653–659. doi:10.1016/j.pharep.2014.03.004

    Article  CAS  PubMed  Google Scholar 

  77. Sheth S, Brito R, Mukherjea D, Rybak LP, Ramkumar V (2014) Adenosine receptors: expression, function and regulation. Int J Mol Sci 15(2):2024–2052. doi:10.3390/ijms15022024

    Article  PubMed  PubMed Central  Google Scholar 

  78. Nayak GH, Prentice HM, Milton SL (2010) Neuroprotective signaling pathways are modulated by adenosine in the anoxia tolerant turtle. J Cereb Blood Flow Metab 31(2):467–475. doi:10.1038/jcbfm.2010.109

    Article  PubMed  PubMed Central  Google Scholar 

  79. Gao Z, Li BS, Day YJ, Linden J (2001) A3 adenosine receptor activation triggers phosphorylation of protein kinase B and protects rat basophilic leukemia 2H3 mast cells from apoptosis. Mol Pharmacol 59(1):76–82

    CAS  PubMed  Google Scholar 

  80. Brazil DP, Hemmings BA (2001) Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci 26(11):657–664

    Article  CAS  PubMed  Google Scholar 

  81. Beaulieu JM, Gainetdinov RR, Caron MG (2009) Akt/GSK3 signaling in the action of psychotropic drugs. Annu Rev Pharmacol Toxicol 49:327–347. doi:10.1146/annurev.pharmtox.011008.145634

    Article  CAS  PubMed  Google Scholar 

  82. Rosa AO, Kaster MP, Binfare RW, Morales S, Martin-Aparicio E, Navarro-Rico ML, Martinez A, Medina M, Garcia AG, Lopez MG, Rodrigues AL (2008) Antidepressant-like effect of the novel thiadiazolidinone NP031115 in mice. Prog Neuro-Psychopharmacol Biol Psychiatry 32(6):1549–1556. doi:10.1016/j.pnpbp.2008.05.020

    Article  CAS  Google Scholar 

  83. Shaywitz AJ, Greenberg ME (1999) CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem 68:821–861. doi:10.1146/annurev.biochem.68.1.821

    Article  CAS  PubMed  Google Scholar 

  84. Li X, Jope RS (2010) Is glycogen synthase kinase-3 a central modulator in mood regulation? Neuropsychopharmacology 35(11):2143–2154. doi:10.1038/npp.2010.105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI, Alkondon M, Yuan P, Pribut HJ, Singh NS, Dossou KS, Fang Y, Huang XP, Mayo CL, Wainer IW, Albuquerque EX, Thompson SM, Thomas CJ, Zarate CA Jr, Gould TD (2016) NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature 533(7604):481–486. doi:10.1038/nature17998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Council for Scientific and Technological Development (CNPq) Brazil (projects #308459/2013-0, #481523/2013-8, #308723/2013-9), National Coordination for the Training and Improvement of Higher Education Personnel (CAPES/MINCyT project #249/14), Santa Catarina State Research Foundation (FAPESC/PRONEX Program—NENASC Project; #1262/2012-9), INCT-National Institute of Science and Technology, and Santa Catarina Program for the Training for Special Education (PROESP/CAPES; #1509/2009). ALSR, MPK, and RBL are recipients of Research Scholarship from CNPq. FMG received a fellowship from CAPES Foundation, Ministry of Education of Brazil. The funding agencies had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors thank Tanara V. Peres for the comments that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Bainy Leal.

Ethics declarations

Conflicts of interest

Filipe Marques Gonçalves declares that he has no conflict of interest.

Vivian Binder Neis declares that she has no conflict of interest.

Débora Kurrle Rieger declares that she has no conflict of interest.

Mark William Lopes declares that he has no conflict of interest.

Isabela A. Heinrich declares that she has no conflict of interest.

Ana Paula Costa declares that she has no conflict of interest.

Ana Lúcia S. Rodrigues declares that she has no conflict of interest.

Manuella P. Kaster declares that she has no conflict of interest.

Rodrigo Bainy Leal declares that he has no conflict of interest.

Ethical approval

The procedures in this study were performed in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals and all the experimental protocols were approved by the Institutional Ethics Committee (protocol number PP00772). All efforts were made to minimize animal suffering and to reduce the number of animals used in the experiments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, F.M., Neis, V.B., Rieger, D.K. et al. Signaling pathways underlying the antidepressant-like effect of inosine in mice. Purinergic Signalling 13, 203–214 (2017). https://doi.org/10.1007/s11302-016-9551-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-016-9551-2

Keywords

Navigation