Skip to main content

Advertisement

Log in

The role of the P2X7 receptor in murine cutaneous leishmaniasis: aspects of inflammation and parasite control

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Leishmania amazonensis is the etiological agent of diffuse cutaneous leishmaniasis. The immunopathology of leishmaniasis caused by L. amazonensis infection is dependent on the pathogenic role of effector CD4+ T cells. Purinergic signalling has been implicated in resistance to infection by different intracellular parasites. In this study, we evaluated the role of the P2X7 receptor in modulating the immune response and susceptibility to infection by L. amazonensis. We found that P2X7-deficient mice are more susceptible to L. amazonensis infection than wild-type (WT) mice. P2X7 deletion resulted in increased lesion size and parasite load. Our histological analysis showed an increase in cell infiltration in infected footpads of P2X7-deficient mice. Analysis of the cytokine profile in footpad homogenates showed increased levels of IFN-γ and decreased TGF-β production in P2X7-deficient mice, suggesting an exaggerated pro-inflammatory response. In addition, we observed that CD4+ and CD8+ T cells from infected P2X7-deficient mice exhibit a higher proliferative capacity than infected WT mice. These data suggest that P2X7 receptor plays a key role in parasite control by regulating T effector cells and inflammation during L. amazonensis infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

KO:

Knockout

DPI:

Days postinfection

ROS:

Reactive oxygen species

NO:

Nitric oxide

LTB4:

Leukotriene B4

FBS:

Heat-inactivated foetal bovine serum

CEUA:

Commission for Ethical Use of Research Animals

TCA:

Trichloroacetic acid

GFI-1:

Growth factor-independent 1 transcription repressor

M199:

199 medium

DMEM:

Dulbecco’s modified Eagle’s medium

References

  1. Alvar J, Velez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, Den BM (2012) Leishmaniasis worldwide and global estimates of its incidence. PLoS One 7:e35671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Showler AJ, Boggild AK (2015) Cutaneous leishmaniasis in travellers: a focus on epidemiology and treatment in 2015. Curr Infect Dis Rep 17:489–0489

    Article  PubMed  Google Scholar 

  3. Mukbel RM, Patten C Jr, Gibson K, Ghosh M, Petersen C, Jones DE (2007) Macrophage killing of Leishmania amazonensis amastigotes requires both nitric oxide and superoxide. AmJTrop Med Hyg 76:669–675

    CAS  Google Scholar 

  4. Henard CA, Carlsen ED, Hay C, Kima PE, Soong L (2014) Leishmania amazonensis amastigotes highly express a tryparedoxin peroxidase isoform that increases parasite resistance to macrophage antimicrobial defenses and fosters parasite virulence. PLoS Negl Trop Dis 8:e3000

    Article  PubMed  PubMed Central  Google Scholar 

  5. Burnstock G (2007) Purine and pyrimidine receptors. Cell Mol Life Sci 64:1471–1483

    Article  CAS  PubMed  Google Scholar 

  6. Burnstock G, Boeynaems JM (2014) Purinergic signalling and immune cells. Purinergic Signal 10:529–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Santos AA Jr, Rodrigues-Junior V, Zanin RF, Borges TJ, Bonorino C, Coutinho-Silva R, Takyia CM, Santos DS, Campos MM, Morrone FB (2013) Implication of purinergic P2X7 receptor in M. Tuberculosis infection and host interaction mechanisms: a mouse model study. Immunobiology 218:1104–1112

    Article  CAS  PubMed  Google Scholar 

  8. Kusner DJ, Adams J (2000) ATP-induced killing of virulent mycobacterium tuberculosis within human macrophages requires phospholipase D. J Immunol 164:379–388

    Article  CAS  PubMed  Google Scholar 

  9. Correa G, Marques da SC, de Abreu Moreira-Souza AC, Vommaro RC, Coutinho-Silva R (2010) Activation of the P2X(7) receptor triggers the elimination of toxoplasma gondii tachyzoites from infected macrophages. Microbes Infect 12:497–504

    Article  CAS  PubMed  Google Scholar 

  10. Morandini AC, Savio LE, Coutinho-Silva R (2014) The role of P2X7 receptor in infectious inflammatory diseases and the influence of ectonucleotidases. Biomed J 37:169–177

    Article  PubMed  Google Scholar 

  11. Miller CM, Zakrzewski AM, Robinson DP, Fuller SJ, Walker RA, Ikin RJ, Bao SJ, Grigg ME, Wiley JS, Smith NC (2015) Lack of a functioning P2X7 receptor leads to increased susceptibility to Toxoplasmic ileitis. PLoS One 10:e0129048

    Article  PubMed  PubMed Central  Google Scholar 

  12. Liu Y, Xiao Y, Li Z (2011) P2X7 receptor positively regulates MyD88-dependent NF-kappaB activation. Cytokine 55:229–236

    Article  CAS  PubMed  Google Scholar 

  13. Coutinho-Silva R, Ojcius DM (2012) Role of extracellular nucleotides in the immune response against intracellular bacteria and protozoan parasites. Microbes Infect 14:1271–1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Biswas D, Qureshi OS, Lee WY, Croudace JE, Mura M, Lammas DA (2008) ATP-induced autophagy is associated with rapid killing of intracellular mycobacteria within human monocytes/macrophages. BMC Immunol 9:35. doi:10.1186/1471-2172-9-35.:35-39 35-39

  15. Chaves SP, Torres-Santos EC, Marques C, Figliuolo VR, Persechini PM, Coutinho-Silva R, Rossi-Bergmann B (2009) Modulation of P2X(7) purinergic receptor in macrophages by Leishmania amazonensis and its role in parasite elimination. Microbes Infect 11:842–849

    Article  CAS  PubMed  Google Scholar 

  16. Chaves MM, Marques-da-Silva C, Monteiro AP, Canetti C, Coutinho-Silva R (2014) Leukotriene B4 modulates P2X7 receptor-mediated Leishmania amazonensis elimination in murine macrophages. J Immunol 192:4765–4773

    Article  CAS  PubMed  Google Scholar 

  17. Ji J, Sun J, Qi H, Soong L (2002) Analysis of T helper cell responses during infection with Leishmania amazonensis. AmJTrop Med Hyg 66:338–345

    Article  Google Scholar 

  18. Soong L, Chang CH, Sun J, Longley BJ Jr, Ruddle NH, Flavell RA, McMahon-Pratt D (1997) Role of CD4+ T cells in pathogenesis associated with Leishmania amazonensis infection. J Immunol 158:5374–5383

    CAS  PubMed  Google Scholar 

  19. Ji J, Masterson J, Sun J, Soong L (2005) CD4 + CD25+ regulatory T cells restrain pathogenic responses during Leishmania amazonensis infection. J Immunol 174:7147–7153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lonardoni MV, Russo M, Jancar S (2000) Essential role of platelet-activating factor in control of Leishmania (Leishmania) amazonensis infection. Infect Immun 68:6355–6361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Felizardo TC, Gaspar-Elsas MI, Lima GM, Abrahamsohn IA (2012) Lack of signaling by IL-4 or by IL-4/IL-13 has more attenuating effects on Leishmania amazonensis dorsal skin--than on footpad-infected mice. Exp Parasitol 130:48–57

    Article  CAS  PubMed  Google Scholar 

  22. Titus RG, Marchand M, Boon T, Louis JA (1985) A limiting dilution assay for quantifying Leishmania major in tissues of infected mice. Parasite Immunol 7:545–555

    Article  CAS  PubMed  Google Scholar 

  23. de Matos Guedes HL, da Silva Costa BL, Chaves SP, de Oliveira Gomes DC, Nosanchuk JD, De Simone SG, Rossi-Bergmann B (2014) Intranasal vaccination with extracellular serine proteases of Leishmania amazonensis confers protective immunity to BALB/c mice against infection. Parasit Vectors 19(7):448. doi:10.1186/1756-3305-7-448 448-7

    Article  Google Scholar 

  24. Miller CM, Boulter NR, Fuller SJ, Zakrzewski AM, Lees MP, Saunders BM, Wiley JS, Smith NC (2011) The role of the P2X(7) receptor in infectious diseases. PLoS Pathog 7:e1002212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Coutinho-Silva R, Correa G, Sater AA, Ojcius DM (2009) The P2X(7) receptor and intracellular pathogens: a continuing struggle. Purinergic Signal 5:197–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Miller CM, Zakrzewski AM, Ikin RJ, Boulter NR, Katrib M, Lees MP, Fuller SJ, Wiley JS, Smith NC (2011) Dysregulation of the inflammatory response to the parasite, toxoplasma gondii, in P2X7 receptor-deficient mice. Int J Parasitol 41:301–308

    Article  CAS  PubMed  Google Scholar 

  27. Amaral EP, Ribeiro SC, Lanes VR, Almeida FM, de Andrade MR, Bomfim CC, Salles EM, Bortoluci KR, Coutinho-Silva R, Hirata MH, Alvarez JM, Lasunskaia EB, D’Imperio-Lima MR (2014) Pulmonary infection with hypervirulent mycobacteria reveals a crucial role for the P2X7 receptor in aggressive forms of tuberculosis. PLoS Pathog 10:e1004188

    Article  PubMed  PubMed Central  Google Scholar 

  28. Adriouch S, Dox C, Welge V, Seman M, Koch-Nolte F, Haag F (2002) Cutting edge: a natural P451L mutation in the cytoplasmic domain impairs the function of the mouse P2X7 receptor. J Immunol 169:4108–4112

    Article  CAS  PubMed  Google Scholar 

  29. Neves AR, Castelo-Branco MT, Figliuolo VR, Bernardazzi C, Buongusto F, Yoshimoto A, Nanini HF, Coutinho CM, Carneiro AJ, Coutinho-Silva R, de Souza HS (2014) Overexpression of ATP-activated P2X7 receptors in the intestinal mucosa is implicated in the pathogenesis of Crohn’s disease. Inflamm Bowel Dis 20:444–457

    Article  PubMed  Google Scholar 

  30. Hofman P, Cherfils-Vicini J, Bazin M, Ilie M, Juhel T, Hebuterne X, Gilson E, Schmid-Alliana A, Boyer O, Adriouch S, Vouret-Craviari V (2015) Genetic and pharmacological inactivation of the purinergic P2RX7 receptor dampens inflammation but increases tumor incidence in a mouse model of colitis-associated cancer. Cancer Res 75:835–845

    Article  CAS  PubMed  Google Scholar 

  31. Rissiek B, Haag F, Boyer O, Koch-Nolte F, Adriouch S (2015) P2X7 on mouse T cells: one channel, many functions. Front Immunol 19(6):204. doi:10.3389/fimmu.2015.00204 eCollection;%2015.:204

    Google Scholar 

  32. Chen L, Brosnan CF (2006) Exacerbation of experimental autoimmune encephalomyelitis in P2X7R−/− mice: evidence for loss of apoptotic activity in lymphocytes. J Immunol 176:3115–3126

    Article  CAS  PubMed  Google Scholar 

  33. Heiss K, Janner N, Mahnss B, Schumacher V, Koch-Nolte F, Haag F, Mittrucker HW (2008) High sensitivity of intestinal CD8+ T cells to nucleotides indicates P2X7 as a regulator for intestinal T cell responses. J Immunol 181:3861–3869

    Article  CAS  PubMed  Google Scholar 

  34. Koutsoni O, Barhoumi M, Guizani I, Dotsika E (2014) Leishmania eukaryotic initiation factor (LeIF) inhibits parasite growth in murine macrophages. PLoS One 9:e97319

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gendron FP, Chalimoniuk M, Strosznajder J, Shen S, Gonzalez FA, Weisman GA, Sun GY (2003) P2X7 nucleotide receptor activation enhances IFN gamma-induced type II nitric oxide synthase activity in BV-2 microglial cells. J Neurochem 87:344–352

    Article  CAS  PubMed  Google Scholar 

  36. Buxbaum LU (2015) Interleukin-10 from T cells, but not macrophages and granulocytes, is required for chronic disease in Leishmania mexicana infection. Infect Immun 83:1366–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schwarz T, Remer KA, Nahrendorf W, Masic A, Siewe L, Muller W, Roers A, Moll H (2013) T cell-derived IL-10 determines leishmaniasis disease outcome and is suppressed by a dendritic cell based vaccine. PLoS Pathog 9:e1003476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bacellar O, Lessa H, Schriefer A, Machado P, Ribeiro de JA, Dutra WO, Gollob KJ, Carvalho EM (2002) Up-regulation of Th1-type responses in mucosal leishmaniasis patients. Infect Immun 70:6734–6740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Trinchieri G (2007) Interleukin-10 production by effector T cells: Th1 cells show self control. J Exp Med 19(204):239–243

    Article  Google Scholar 

  40. Anderson CF, Oukka M, Kuchroo VJ, Sacks D (2007) CD4(+)CD25(−)Foxp3(−) Th1 cells are the source of IL-10-mediated immune suppression in chronic cutaneous leishmaniasis. J Exp Med 19(204):285–297

    Article  Google Scholar 

  41. Jankovic D, Kullberg MC, Feng CG, Goldszmid RS, Collazo CM, Wilson M, Wynn TA, Kamanaka M, Flavell RA, Sher A (2007) Conventional T-bet(+)Foxp3(−) Th1 cells are the major source of host-protective regulatory IL-10 during intracellular protozoan infection. J Exp Med 19(204):273–283

    Article  Google Scholar 

  42. Bogdan C, Nathan C (1993) Modulation of macrophage function by transforming growth factor beta, interleukin-4, and interleukin-10. Ann N Y Acad Sci 685:713–739 713-739

    Article  CAS  PubMed  Google Scholar 

  43. Espir TT, Figueira LP, Naiff MF, da Costa AG, Ramalho-Ortigao M, Malheiro A, Franco AM (2014) The role of inflammatory, anti-inflammatory, and regulatory cytokines in patients infected with cutaneous leishmaniasis in Amazonas state, Brazil. J Immunol Res 2014. doi:10.1155/2014/481750

Download references

Acknowledgements

This work was supported by funds from the Conselho Nacional de Desenvolvimento Cientifico e Tecnológico do Brasil (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), the Programa de Núcleos de Excelência (PRONEX), Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), the Instituto Nacional de Ciência e Tecnologia para Pesquisa Translacional em Saúde e Ambiente na Região Amazônica (INPeTAm/UFRJ), and the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robson Coutinho-Silva.

Ethics declarations

Conflict of interest

Vanessa Ribeiro Figliuolo declares that she has no conflict of interest.

Suzana Passos Chaves declares that she has no conflict of interest.

Luiz Eduardo Baggio Savio declares that he has no conflict of interest.

Maria Luiza Prates Thorstenberg declares that she has no conflict of interest.

Érika Machado Salles declares that she has no conflict of interest.

Christina Maeda Takiya declares that she has no conflict of interest.

Maria Regina D’Império-Lima declares that she has no conflict of interest.

Herbert Leonel de Matos Guedes declares that he has no conflict of interest.

Bartira Rossi-Bergmann declares that she has no conflict of interest.

Robson Coutinho-Silva declares that he has no conflict of interest.

Ethical approval

All animals received care according to institutional guidelines, and all procedures were according to EU guidelines (2010/63) after approval by the Animal Care Committee of the Federal University of Rio de Janeiro.

Additional information

Vanessa Ribeiro Figliuolo and Suzana Passos Chaves contributed equally

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Figliuolo, V.R., Chaves, S.P., Savio, L.E.B. et al. The role of the P2X7 receptor in murine cutaneous leishmaniasis: aspects of inflammation and parasite control. Purinergic Signalling 13, 143–152 (2017). https://doi.org/10.1007/s11302-016-9544-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-016-9544-1

Keywords

Navigation