Skip to main content
Log in

Clopidogrel attenuates lithium-induced alterations in renal water and sodium channels/transporters in mice

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Lithium (Li) administration causes deranged expression and function of renal aquaporins and sodium channels/transporters resulting in nephrogenic diabetes insipidus (NDI). Extracellular nucleotides (ATP/ADP/UTP), via P2 receptors, regulate these transport functions. We tested whether clopidogrel bisulfate (CLPD), an antagonist of ADP-activated P2Y12 receptor, would affect Li-induced alterations in renal aquaporins and sodium channels/transporters. Adult mice were treated for 14 days with CLPD and/or Li and euthanized. Urine and kidneys were collected for analysis. When administered with Li, CLPD ameliorated polyuria, attenuated the rise in urine prostaglandin E2 (PGE2), and resulted in significantly higher urinary arginine vasopressin (AVP) and aldosterone levels as compared to Li treatment alone. However, urine sodium excretion remained elevated. Semi-quantitative immunoblotting revealed that CLPD alone increased renal aquaporin 2 (AQP2), Na-K-2Cl cotransporter (NKCC2), Na-Cl cotransporter (NCC), and the subunits of the epithelial Na channel (ENaC) in medulla by 25–130 %. When combined with Li, CLPD prevented downregulation of AQP2, Na-K-ATPase, and NKCC2 but was less effective against downregulation of cortical α- or γ-ENaC (70 kDa band). Thus, CLPD primarily attenuated Li-induced downregulation of proteins involved in water conservation (AVP-sensitive), with modest effects on aldosterone-sensitive proteins potentially explaining sustained natriuresis. Confocal immunofluorescence microscopy revealed strong labeling for P2Y12-R in proximal tubule brush border and blood vessels in the cortex and less intense labeling in medullary thick ascending limb and the collecting ducts. Therefore, there is the potential for CLPD to be directly acting at the tubule sites to mediate these effects. In conclusion, P2Y12-R may represent a novel therapeutic target for Li-induced NDI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rieg T, Bundey RA, Chen Y, Deschens G, Junger W, Insel PA, Vallon V (2007) Mice lacking P2Y2 receptors have salt-resistant hypertension and facilitated renal Na+ and water reabsorption. FASEB J 21:3717–3726. doi:10.1096/fj.07-8807com

    Article  CAS  PubMed  Google Scholar 

  2. Zhang Y, Sands JM, Kohan DE, Nelson RD, Martin CF, Carlson NG, Kamerath CD, Ge Y, Klein JD, Kishore BK (2008) Potential role of purinergic signaling in urinary concentration in inner medulla: insights from P2Y2 receptor gene knockout mice. Am J Physiol Renal Physiol 295:F1715–F1724. doi:10.1152/ajprenal.90311.2008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Wildman SS, Marks J, Turner CM, Yew-booth L, Peppiat-Wildman CM, King BF, Shirley DG, Wang W, Unwin RJ (2008) Sodium-dependent regulation of renal amiloride-sensitive currents by apical P2 receptors. J Am Soc Nephrol 19:731–742. doi:10.1681/ASN.2007040443

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Vallon V (2008) P2 receptors in the regulation of renal transport mechanisms. Am J Physiol Ren Physiol 294:F10–F27. doi:10.1152/ajprenal.00432.2007

    Article  CAS  Google Scholar 

  5. Kishore BK, Nelson RD, Miller RL, Carlson NG, Kohan DE (2009) P2Y2 receptors and water transport in the kidney. Puriner Signal 5:491–499. doi:10.1007/s11302-009-9151-5

    Article  CAS  Google Scholar 

  6. Prætorius H, Leipziger J (2010) Intrarenal purinergic signaling in the control or renal tubular transport. Annu Rev Physiol 72:377–393. doi:10.1146/annurev-physiol-021909-135825

    Article  PubMed  Google Scholar 

  7. Vallon V, Rieg T (2011) Regulation of renal transport mechanisms. Am J Physiol Ren Physiol 301:F463–F475

    Article  CAS  Google Scholar 

  8. Leipziger J (2011) Luminal nucleotides are tonic inhibitors of renal tubular transport. Curr Opin Nephrol Hypertens 20:518–522. doi:10.1097/MNH.0b013e3283487393

    Article  CAS  PubMed  Google Scholar 

  9. Toney GM, Vallon V, Stockand JD (2012) Intrinsic control of sodium excretion in the distal nephron by inhibitory purinergic regulation of the epithelial Na+ channel. Curr Opin Nephrol Hypertens 21:52–60. doi:10.1097/MNH.0b013e32834db4a0

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Wildman SSP, Kang ESK, King BF (2009) ENaC, renal sodium excretion and extracellular ATP. Purinergic Signal 5:481–489. doi:10.1007/s11302-009-9150-6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Stockand JD, Mironova E, Bugaj V, Rieg T, Insel PA, Vallon V, Peti-Peterdi J, Pochynyuk O (2010) Purinergic inhibition of ENaC produces aldosterone escape. J Am Soc Nephrol 21:1903–1911. doi:10.1681/ASN.2010040377

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Zhang Y, Pop IL, Carlson NG, Kishore BK (2012) Genetic deletion of the P2Y2 receptor offers significant resistance to development of lithium-induced polyuria accompanied by alterations in PGE2 signaling. Am J Physiol Ren Physiol 302:F70–F77. doi:10.1152/ajprenal.00444.2011

    Article  CAS  Google Scholar 

  13. Zhang Y, Li L, Kohan DE, Ecelbarger CM, Kishore BK (2013) Attenuation of lithium-induced natriuresis and kaliuresis in P2Y2 receptor knockout mice. Am J Physiol Ren Physiol 305:F407–F416. doi:10.1152/ajprenal.00464.2012

    Article  CAS  Google Scholar 

  14. Zhang Y, Morris KL, Sparrow SK, Dwyer KM, Enjyoji K, Robson SC, Kishore BK (2012) Defective renal water handling in transgenic mice over-expressing human CD30/NTPDase1. Am J Physiol Ren Physiol 303:F420–F430. doi:10.1152/ajprenal.00060.2012

    Article  CAS  Google Scholar 

  15. Zhang Y, Robson SC, Morris KL, Heiney KM, Dwyer KM, Kishore BK, Ecelbarger CM (2015) Impaired natriuretic response to high-NaCl diet plus aldosterone infusion in mice over-expressing human CD39, an ectonucleotidase (NTPDase1). Am J Physiol Renal Physiol doi: 10.1152/ajprenal.00125.2014 [Epub ahead of print]

  16. Grünfeld JP, Rossier BC (2009) Lithium nephrotoxicity revisited. Nat Rev Nephrol 5:270–276. doi:10.1038/nrneph.2009.43

    Article  PubMed  Google Scholar 

  17. Kishore BK, Ecelbarger CM (2013) Lithium: a versatile tool for understanding renal physiology. Am J Physiol Ren Physiol 304:F1139–F1149. doi:10.1152/ajprenal.00718.2012

    Article  CAS  Google Scholar 

  18. Dorsam R, Kunapalli SP (2004) Central role of the P2Y12 receptor in platelet activation. J Clin Invest 113:340–345. doi:10.1172/JCI200420986

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Pausch MH, Lai M, Tseng E, Paulsen J, Bates N, Kwak S (2004) Functional expression of human and mouse P2Y12 receptors in Saccharomyces cerevisiae. Biochi Biophys Res Commun 324:171–177. doi:10.1016/j.bbrc.2004.09.034

    Article  CAS  Google Scholar 

  20. Zhang Y, Peti-Peterdi J, Müller CE, Carlson NG, Baqi Y, Strasburg DL, Heiney KM, Villanueva K, Kohan DE, Kishore BK (2015) P2Y12 receptor localizes in the renal collecting duct and its blockade augments arginine vasopressin action and alleviates nephrogenic diabetes insipidus. J Am Soc Nephrol Pii: ASN.2014010118. [Epub ahead of print]

  21. Zhang Y, Nelson RD, Carlson NG, Kamerath CD, Kohan DE, Kishore BK (2009) Potential role of purinerigic signaling in lithium-induced nephrogenic diabetes insipidus. Am J Physiol Ren Physiol 296:F1194–F1201. doi:10.1152/ajprenal.90774.2008

    Article  CAS  Google Scholar 

  22. Reagan-Shaw S, Nihal M, Ahmad N (2007) Dose translation from animal to human studies revisted. FASEB J 22:659–661. doi:10.1096/fj.07-9574LSF

    Article  PubMed  Google Scholar 

  23. Reist M, Rou-de Vos M, Montseny JP, Mayer KM, Carrupt PA, Berger Y, Testa B (2000) Very slow chiral inversion of clopidogrel in rats: a pharmacokinetic and mechanistic investigation. Drug Metab Disp 28:1405–1410

    CAS  Google Scholar 

  24. Zhang Y, Kohan DE, Nelson RD, Carlson NG, Kishore BK (2010) Potential involvement of P2Y2 receptor in diuresis of postobstructive uropathy in rats. Am J Physiol Ren Physiol 298:F634–F642. doi:10.1152/ajprenal.00382.2009

    Article  CAS  Google Scholar 

  25. Zhang Y, Listhrop R, Ecelbarger CM, Kishore BK (2011) Renal sodium transporter/channel expression and sodium excretion in P2Y2 receptor knockout mice fed high-NaCl diet with/without aldosterone infusion. Am J Physol Ren Physiol 300:F567–F668. doi:10.1152/ajprenal.00549.2010

    Google Scholar 

  26. Hanner F, Lan L, Nguyen TX, Yu A, Peti-Peterdi J (2012) Intrarenal localization of the plasma membrane channel pannexin 1. Am J Physiol Ren Physiol 303:F1454–F1459. doi:10.1152/ajprenal.00206.2011

    Article  CAS  Google Scholar 

  27. Kishore BK, Zhang Y, Gevorgyan H, Kohan DE, Schiedel AC, Müller CE, Peti-Peterdi J (2013) Cellular localization of adenine receptors in the rat kidney and their functional significance in the inner medullary collecting duct. Am J Physiol Ren Physiol 305:F1298–F1305. doi:10.1152/ajprenal.00254.2013

    Article  CAS  Google Scholar 

  28. Allen HM, Jackson RL, Winchester MD, Deck LV, Allon M (1989) Indomethacin in the treatment of lithium-induced nephrogenic diabetes insipidus. Arch Intern Med 149:1123–1126. doi:10.1001/archinte.1989.00390050095019

    Article  CAS  PubMed  Google Scholar 

  29. Sugawara M, Hashimot K, Ota Z (1988) Involvement of prostaglandin E2, cAMP, and vasopressin in lithium-induced polyuria. Am J Physiol Regul Integr Comp Physiol 254:R863–R869

    CAS  Google Scholar 

  30. Mironova E, Boiko N, Bugai V, Kucher V, Stockand JD (2015) Regulation of Na+ excretion and arterial blood pressure by purinergic signalling intrinsic to the distal nephron: consequences and mechanisms. Acta Physiol 213:213–221. doi:10.1111/apha.12372

    Article  CAS  Google Scholar 

  31. McDonough AA (2010) Mechanisms of proximal tubule sodium transport regulation that link extracellular fluid volume and blood pressure. Am J Physiol Regul Integr Comp Physiol 298:R851–R861. doi:10.1152/ajpregu.00002.2010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Knepper MA, Kim G-H, Fernández-Llama ECA (1999) Regulation of thick ascending limb transport by vasopressin. J Am Soc Nephrol 10:628–634

    CAS  PubMed  Google Scholar 

  33. Ecelbarger CA, Kim GH, Wade JB, Knepper MA (2001) Regulation of the abundance of renal sodium transporters and channels by vasopressin. Exp Nephrol 171:227–234. doi:10.1006/exnr.2001.7775

    CAS  Google Scholar 

  34. Ares GR, Caceres PS, Ortiz PA (2011) Molecular regulation of NKCC2 in the thick ascending limb. Am J Physiol Ren Physiol 301:F1143–F1159. doi:10.1152/ajprenal.00396.2011

    Article  CAS  Google Scholar 

  35. Kim GH, Masilamani S, Turner R, Mitchell C, Wade JB, Knepper MA (1998) The thiazide-sensitive Na-Cl cotransporter is an aldosterone-induced protein. Proc Natl Acad Sci U S A 95:14552–1455. doi:10.1073/pnas.95.24.14552

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Eladari D, Chambrey R, Picard N, Hadchouel J (2014) Electrochemical absorption of NaCl by the aldosterone-sensitive distal nephron: implications for normal electrolytes homeostasis and blood pressure regulation. Cell Mol Life Sci 71:2879–2895

    Article  CAS  PubMed  Google Scholar 

  37. Mutig K, Saritas T, Uchida S, Kahl T, Borowski T, Paliege A, Böhlick A, Bleich M, Shan Q, Bachmann S (2010) Short-term stimulation of the thiazide-sensitive Na+-Cl cotransporter by vasopressin involves phosphorylation and membrane translocation. Am J Physiol Ren Physiol 298:F502–F509. doi:10.1152/ajprenal.00476.2009

    Article  CAS  Google Scholar 

  38. Nielsen J, Kwon TH, Frøkiær J, Knepper MA, Nielsen S (2006) Lithium-induced NDI in rats is associated with loss of alpha-ENaC regulation by aldosterone in CCD. Am J Physiol Ren Physiol 290:F1222–F1233. doi:10.1152/ajprenal.00321.2005

    Article  CAS  Google Scholar 

  39. Kortenoeven ML, Li Y, Shaw S, Gaeggeler HP, Rossier BC, Wetzels JF, Deen PM (2009) Amiloride blocks lithium entry through sodium channel thereby attenuating the resultant nephrogenic diabetes insipidus. Kidney Int 76:44–53. doi:10.1038/ki.2009.91

    Article  CAS  PubMed  Google Scholar 

  40. Christensen BM, Zuber AM, Loffing J, Stehle JC, Deen PM, Rossier BC, Hummler E (2011) alpha-ENaC-mediated lithium absorption promotes nephrogenic diabetes insipidus. J Am Soc Nephrol 22:253–261. doi:10.1681/ASN.2010070734

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Kortenoeven ML, Schweer H, Cox R, Wetzels JF, Deen PM (2012) Lithium reduces aquaporin-2 transcription independent of prostaglandins. Am J Physiol Cell Physiol 302:C131–C140. doi:10.1152/ajpcell.00197.2011

    Article  CAS  PubMed  Google Scholar 

  42. Nicco C, Wittner M, DiStefano A, Jounier S, Bankir S, Bouby N (2001) Chronic exposure to vasopressin upregulates ENaC and sodium transport in the rat renal collecting duct and lung. Hypertens 38:1143–1149. doi:10.1161/hy1001.092641

    Article  CAS  Google Scholar 

  43. Sauter D, Fernandes S, Goncalves-Mendes N, Boulkroun S, Bankir L, Loffing J, Bouby N (2006) Long-term effects of vasopressin on the subcellular localization of ENaC in the renal collecting system. Kidney Int 69:1024–1032. doi:10.1038/sj.ki.5000211

    Article  CAS  PubMed  Google Scholar 

  44. Bhalla V, Hallows KR (2008) Mechanisms of ENaC regulation and clinical implications. J Am Soc Nephrol 19:1845–1854. doi:10.1681/ASN.2008020225

    Article  CAS  PubMed  Google Scholar 

  45. Svenningsen P, Friis UG, Bistrup C, Buhl KB, Jensen BL, Skøtt O (2011) Physiological regulation of epithelial sodium channel by proteolysis. Curr Opin Nephrol Hypertens 20:529–533. doi:10.1097/MNH.0b013e328348bcc7

    Article  CAS  PubMed  Google Scholar 

  46. Masilamani S, Kim GH, Mitchell C, Wade JB, Knepper MA (1999) Aldosterone-mediated regulation of ENaC alpha, beta, and gamma subunit proteins in rat kidney. J Clin Invest 104:R19–R23

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Masilamani S, Wang X, Kim GH, Brooks H, Nielsen J, Nielsen S, Nakamura K, Stoke JB, Knepper MA (2002) Time course of renal Na-K-ATPase, NHE3, NKCC2, NCC and ENaC abundance changes with dietary NaCl restriction. Am J Physiol Ren Physiol 283:F648–F657

    Article  Google Scholar 

  48. Riazi S, Khan O, Tiwari S, Hu X, Ecelbarger C (2006) Rosiglitazone regulates ENaC and Na-K-2Cl cotransporter (NKCC2) in the obese zucker rat. Am J Nephrol 26:245–257

    Article  CAS  PubMed  Google Scholar 

  49. Zhang Y, Carlson NG, Kishore BK, Ecelbarger CM (2013) Pharmacological blockade of P2Y2 receptor reverses lithium-induced downregulation of NKCC2, NCC, and α-ENaC protein abundances in mice (Abstract). J Am Soc Nephrol 24:537A

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the US Department of Veterans Affairs Merit Review Program (to B. K. Kishore) and the resources and facilities at the VA SLC Health Care System, Salt Lake City, Utah, and Marriott Cardiovascular Fellowship (to C. M. Ecelbarger). Additional funding sources include National Institute of Diabetes and Digestive and Kidney Diseases Grant DK-64324 (to J. Peti-Peterdi) and an Established Investigator Award from the American Heart Association (to C. M. Ecelbarger).

Conflict of interest

No conflicts of interest, financial or otherwise, are declared by the author(s). Parts of this work were presented at the Kidney Week 2013 of the American Society of Nephrology, October–November 2013, Atlanta, GA, and appeared as a printed abstract in the proceedings of that meeting [49].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bellamkonda K. Kishore.

Additional information

Carolyn M. Ecelbarger and Bellamkonda K. Kishore contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Peti-Peterdi, J., Heiney, K.M. et al. Clopidogrel attenuates lithium-induced alterations in renal water and sodium channels/transporters in mice. Purinergic Signalling 11, 507–518 (2015). https://doi.org/10.1007/s11302-015-9469-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-015-9469-0

Keywords

Navigation