Skip to main content
Log in

Monotropastrum humile var. humile is associated with diverse ectomycorrhizal Russulaceae fungi in Japanese forests

  • Original Article
  • Published:
Ecological Research

Abstract

Monotropastrum humile is nearly lacking in chlorophyll and obtains its nutrients, including carbon sources, from associated mycorrhizal fungi. We analyzed the mycorrhizal fungal affinity and species diversity of M. humile var. humile mycorrhizae to clarify how the plant population survives in Japanese forest ecosystems. We classified 78 samples of adult M. humile var. humile individuals from Hokkaido, Honshu, and Kyusyu Islands into 37 root mycorrhizal morphotypes. Of these, we identified 24 types as Russula or Lactarius fungal taxa in the Russulaceae, Basidiomycetes, but we could not identify the remaining 13 types as to their genus in the Basidiomycetes. The number of fungal species on M. humile var. humile was the highest in the plant subfamily. The diversity of fungal species revealed its increased trends in natural forests at the stand level, fagaceous vegetation, and cool-temperate climate. The most frequently observed fungus colonized mainly samples collected from sub-alpine forests; the second most frequently observed fungus colonized samples collected from sub-alpine to warm-temperate forests. These results suggest that Japanese M. humile populations are associated with specific but diverse fungi that are common ectomycorrhizal symbionts of various forest canopy trees, indicating a tripartite mycorrhizal relationship in the forest ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adhikari MK (2000) Mushrooms of Nepal. G Adhikari, Katmandu

    Google Scholar 

  • Agerer R (1987–2002) Colour Atlas of Ectomycorrhizae, 1st–12th delivery. Einhorn, Munich

  • Bidartondo MI (2005) The evolutionary ecology of myco-heterotrophy. New Phytol 167:335–352

    Article  PubMed  Google Scholar 

  • Bidartondo MI, Bruns TD (2001) Extreme specificity in epiparasitic Monotropoideae (Ericaceae): widespread phylogenetic and geographical structure. Mol Ecol 10:2285–2295

    Article  PubMed  CAS  Google Scholar 

  • Bidartondo MI, Bruns TD (2002) Fine-level mycorrhizal specificity in the Monotropoideae (Ericaceae): specificity for fungal species groups. Mol Ecol 11:557–569

    Article  PubMed  CAS  Google Scholar 

  • Bidartondo MI, Bruns TD (2005) On the origins of extreme mycorrhizal specificity in the Monotropoideae (Ericaceae): performance trade-offs during seed germination and seedling development. Mol Ecol 14:1549–1560

    Article  PubMed  CAS  Google Scholar 

  • Bidartondo MI, Kretzer AM, Pine EM, Bruns TD (2000) High root concentration and uneven ectomycorrhizal diversity near Sarcodes sanguinea (Ericaceae): a cheater that stimulates its victims? Am J Bot 87:1783–1788

    Article  PubMed  Google Scholar 

  • Bills GF, Holtzman GI, Miller OK (1986) Comparison of ectomycorrhizal–basidiomycete communities in red spruce versus northern hardwood forests of West Virginia. Can J Bot 64:760–768

    Article  Google Scholar 

  • Björkman E (1960) Monotropa hypopithys L.: an epiparasite on tree roots. Physiol Plant 13:308–327

    Article  Google Scholar 

  • Brunner I, Brunner F, Lausen GA (1992) Characterization and comparison of macrofungal communities in an Alnus tenuifolia and an Alnus crispa forest in Alaska. Can J Bot 70:1247–1258

    Article  Google Scholar 

  • Cullings KW, Szaro TM, Bruns T (1996) Evolution of extreme specialization within a lineage of ectomycorrhizal epiparasites. Nature 379:63–66

    Article  CAS  Google Scholar 

  • Duddridge JA, Read DJ (1982) An ultrastructural analysis of the development of mycorrhizae in Monotropa hypopithys L. New Phytol 92:203–214

    Article  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  PubMed  CAS  Google Scholar 

  • Gardes M, Bruns TD (1996) Community structure of ectomycorrhizal fungi in a Pinus muricata forest: above- and below-ground views. Can J Bot 74:1572–1583

    Article  Google Scholar 

  • Gardes M, Dahlberg A (1996) Mycorrhizal diversity in arctic and alpine tundra: an open question. New Phytol 133:147–157

    Article  Google Scholar 

  • Hara H (1965) New or noteworthy flowering plants from Eastern Himalaya (4). J Jpn Bot 40:97–103

    Google Scholar 

  • Ingleby K, Mason PA, Last FT, Fleming LV (1990) Identification of Ectomycorrhizas. HSMO, London

    Google Scholar 

  • Kasuya MCM, Masaka K, Igarashi T (1995) Mycorrhizae of Monotropastrum globosum growing in a Fagus crenata forest. Mycoscience 36:461–464

    Article  Google Scholar 

  • Keinänen M, Julkunen-Tiitto R, Rousi M, Tahvanainen J (1999) Taxonomic implications of phenolic variation in leaves of birch (Betula L.) species. Biochem Syst Ecol 27:243–254

    Article  Google Scholar 

  • Kernaghan G, Currah RS, Bayer RJ (1997) Russulaceous ectomycorrhizae of Abies lasiocarpa and Picea engelmannii. Can J Bot 75:1843–1850

    Google Scholar 

  • Kirk PM, Cannon PF, David JC, Stalpers JA (2001) Dictionary of the fungi, 9th edn. CAB International, Wallingford

    Google Scholar 

  • Kretzer AM, Bidartondo MI, Grubisha LC, Spatafora JW, Szaro TM, Bruns TD (2000) Regional specialization of Sarcodes sanguinea (Ericaceae) on a single fungal symbiont from the Rhizopogon ellenae (Rhizopogonaceae) species complex. Am J Bot 87:1778–1783

    Article  PubMed  Google Scholar 

  • Largent D, Johnson D, Watling R (1977) How to identify mushrooms to genus III: microscopic features. Mad River Press, Eureka

    Google Scholar 

  • Leake JR (1994) The biology of myco-heterotrophic (‘saprophytic’) plants. New Phytol 127:171–216

    Article  Google Scholar 

  • Leake JR, Mckendrick SL, Bidartondo M, Read DJ (2005) Symbiotic germination and development of the myco-heterotroph Monotropa hypopithys in nature and its requirement for locally distributed Tricholoma spp. New Phytol 163:405–423

    Article  Google Scholar 

  • Lee SS, Alexander IJ, Watling R (1997) Ectomycorrhizas and putative ectomycorrhizal fungi of Shorea leprosula Miq. (Dipterocarpaceae). Mycorrhiza 7:63–81

    Article  Google Scholar 

  • Martin F (1985) Sur la mycorhization de Monotropa hypopithys par quelques espèces du genre Tricholoma. Bull Soc Myc Fr 101:249–256

    Google Scholar 

  • Massicotte HB, Melville LH, Peterson RL (2005) Structural features of mycorrhizal associations in two members of the Monotropoideae, Monotropa uniflora and Pterospora andromedea. Mycorrhiza 15:101–110

    Article  PubMed  CAS  Google Scholar 

  • Matsuda Y, Hijii N (1998) Spatiotemporal distribution of fruit bodies of ectomycorrhizal fungi in an Abies firma forest. Mycorrhiza 8:131–138

    Article  Google Scholar 

  • Matsuda Y, Yamada A (2003) Mycorrhizal association of Monotropa globosum collected from five different forests in central Japan. Mycologia 95:993–997

    Article  Google Scholar 

  • Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbioses: community-ecological consequences and practical implications. In: Allen MF (ed) Mycorrhizal functioning. Chapman and Hall, New York, pp 357–423

    Google Scholar 

  • Murakami Y (1987) Spatial distribution of Russula species in Castanopsis cupidata forest. Trans Br Mycol Soc 89:187–193

    Google Scholar 

  • Rice EL (1984) Allelopathy, 2nd edn. Academic Press, New York

    Google Scholar 

  • Richardson MJ (1970) Studies on Russula emetica and other agarics in a Scots pine plantation. Trans Br Mycol Soc 55:217–229

    Article  Google Scholar 

  • Robertson DC, Robertson JA (1982) Ultrastructure of Pterospora andromedea Nuttrall and Sarcodes sanguinea Torrey mycorrhizas. New Phytol 92:539–551

    Article  Google Scholar 

  • Santamour JFS, Lundgren LN (1997) Rhododendrin in Betula: a reappraisal. Biochem Syst Ecol 25:335–341

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Southworth D, He X-H, Swenson W, Bledsoe CS, Horwath WR (2005) Application of network theory to potential mycorrhizal networks. Mycorrhiza 15:589–595

    Article  PubMed  CAS  Google Scholar 

  • Tsukaya H (1998) Flowering time of two saprophytic plants, Monotropa uniflora L. and Monotropastrum humile (D. Don.) Hara. J Plant Res 111:595–597

    Article  Google Scholar 

  • Wallace GD (1975) Studies of the Monotropoideae (Ericaceae) taxonomy and distribution. Wasmann J Bot 33:1–88

    Google Scholar 

  • Watling R, Lee SS (1998) Ectomycorrhizal fungi associated with members of the Dipterocarpaceae in peninsular Malaysia—II. J Trop For Sci 10:421–430

    Google Scholar 

  • Yamada A, Katsuya K (2001) The disparity between the number of ectomycorrhizal fungi and those producing fruit bodies in a Pinus densiflora stand. Mycol Res 105:957–965

    Article  Google Scholar 

  • Yamada A, Ogura T, Ohmasa M (2001) Cultivation of mushrooms of edible ectomycorrhizal fungi associated with Pinus densiflora by in vitro mycorrhizal synthesis II. Morphology of ectomycorrhizas in open-pot soil. Mycorrhiza 11:67–81

    Article  CAS  Google Scholar 

  • Yang S, Pfister DH (2006) Monotropa uniflora plants of eastern Massachusetts form mycorrhizae with a diversity of russulacean fungi. Mycologia 98:535–540

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama J, Fukuda T, Tsukaya H (2005) Molecular identification of the mycorrhizal fungi of the epiparasitic plant Monotropastrum humile var. glaberrimum (Ericaceae). J Plant Res 118:53–56

    Article  PubMed  CAS  Google Scholar 

  • Young BW, Massicotte HB, Tackaberry LE, Baldwin QF, Egger KN (2002) Monotropa uniflora: morphological and molecular assessment of mycorrhizae retrieved from sites in the sub-boreal spruce biogeoclimatic zone in central British Columbia. Mycorrhiza 12:75–82

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to T. Hosoda, A. Imamura, S. Hasegawa, J. Matsumoto, H. Shiroyama, T. Sawahata, and the late K. Kasai for providing M. humile samples. This study was partly supported by Grants-in-Aid (Nos. 14104006 and 19651099) to A. Yamada and N. Matsushita from the Japanese Ministry of Education, Culture, Sports, Science, and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akiyoshi Yamada.

Appendices

Appendix 1

Table 5 List of Monotropastrum humile var. humile samples

Appendix 2

Table 6 Characteristics of the mycorrhizal morphotypes of Monotropastrum humile var. humile

About this article

Cite this article

Yamada, A., Kitamura, D., Setoguchi, M. et al. Monotropastrum humile var. humile is associated with diverse ectomycorrhizal Russulaceae fungi in Japanese forests. Ecol Res 23, 983–993 (2008). https://doi.org/10.1007/s11284-008-0463-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-008-0463-7

Keywords

Navigation