Skip to main content

Advertisement

Log in

Joint design of physical and MAC layer by applying the constellation rearrangement technique in cooperative multi-hop networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Cooperative diversity schemes can be seen as an extension of spatial diversity systems, where distributed antennas are placed in relay nodes distributed in space as compared to a single multi-antenna source or receiver in conventional spatial diversity systems. Such cooperative communication systems improve the diversity gain significantly. In this paper a cross layer optimization scheme, based on cooperative diversity along with constellation rearrangement, is proposed for minimizing energy toll and enhancing the network longevity. By utilizing a cross-layer cooperative strategy, distributive algorithms are proposed for the dependability restriction multi-hop networks. We demonstrate through simulations that the proposed cross-layer cooperative strategies along with constellation rearrangement achieve considerable energy savings and extend the network longevity significantly. Finally the proposed scheme is evaluated through NS2 simulations in terms of throughput and delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Barua, B., Abolhasan, M., & Safaei, F. (2011). On the symbol error probability of multi-hop parallel relay networks. IEEE Communications Letters, 15(7), 719–721.

    Article  Google Scholar 

  2. Barua, B., Safaei, F., & Abolhasan, M. (2010). On the outage of multi-hop parallel relay networks. In Proceedings of IEEE vehicular technology conference, VTC-2010 fall, Ottawa, Canada, pp. 1–5. doi:10.1109/VETECF.2010.5594220

  3. Gui, B., Dai, L., & Cimini, L. (2009). Routing strategies in multi-hop cooperative networks. IEEE Transactions on Wireless Communications, 8(2), 843–855.

    Article  Google Scholar 

  4. Ngo, H. Q., & Larsson, E. G. (2011). Linear multi-hop amplify-and-forward relay channels: Error exponent and optimal number of hops. IEEE Transactions on Wireless Communications, 10(11), 3834–3842.

    Article  Google Scholar 

  5. Bai, Zhiquan, Jia, Jianlan, Wang, Cheng-Xiang, & Yuan, Dongfeng. (2015). Performance analysis of SNR-based incremental hybrid decode-amplify-forward cooperative relaying protocol. IEEE Transactions on Communications, 63(6), 1–1.

    Article  Google Scholar 

  6. Qi, Jian, Aissa, S., & Alouini, M.-S. (2014). Dual-hop amplify-and-forward cooperative relaying in the presence of Tx and Rx in-phase and quadrature-phase imbalance. IET Communications, 8(3), 287–298.

    Article  Google Scholar 

  7. van der Meulen, E. C. (1971). Three-terminal communication channels. Advances in Applied Probability, 3(1), 120–154.

    Article  MathSciNet  MATH  Google Scholar 

  8. Cover, T. M., & El Gamal, A. A. (1979). Capacity theorems for the relay channel. IEEE Transactions on Information Theory, 25(5), 572–584.

    Article  MathSciNet  MATH  Google Scholar 

  9. Uysal, M., & Fareed, M. M. (2010). Cooperative diversity systems for wireless communication. In I. Woungang, S. Misra, & S. C. Misra (Eds.), Handbook on information and coding theory. Singapore: World Scientific.

    Google Scholar 

  10. Barua, B., Ngo, H., & Shin, H. (2008). On the SEP of cooperative diversity with opportunistic relaying. IEEE Communications Letters, 12(10), 727–729.

    Article  Google Scholar 

  11. da Costa, D., & Aissa, S. (2009). End-to-end performance of dual-hop semi blind relaying systems with partial relay selection. IEEE Transactions on Wireless Communications, 8(8), 4306–4315.

    Article  Google Scholar 

  12. Khormuji, M., & Skoglund, M. (2011). Capacity achieving instantaneous relaying. IEEE International Symposium on Wireless Communication Systems (ISWCS), pp. 814–818.

  13. Quek, T. Q. S., Win, M. Z., & Chiani, M. (2010). Robust power allocation algorithms for wireless relay networks. IEEE Transactions on Communications, 58(7), 1931–1938.

    Article  Google Scholar 

  14. Izi, Y. A., & Falahati, A. (2012). Amplify-forward relaying for multiple-antenna multiple relay networks under individual power constraint at each relay. EURASIP Journal on Wireless Communications and Networking, 2012(1), 1.

    Article  Google Scholar 

  15. Ding, H., Ge, J., da Costa, D. B., & Jiang, Z. (2010). Diversity and coding gains of fixed-gain amplify-and-forward with partial relay selection in Nakagami-m fading. IEEE Communications Letters, 14(8), 734–736.

    Article  Google Scholar 

  16. Ding, Zhiguo, Leung, Kin K., Goeckel, Dennis L., & Towsley, Don. (2011). Opportunistic relaying for secrecy communications: Cooperative jamming vs. relay chatting. IEEE Transactions on Wireless Communications, 10(6), 1725–1729.

    Article  Google Scholar 

  17. Krikidis, I., Thompson, J., McLaughlin, S., & Goertz, N. (2008). Amplify and- forward with partial relay selection. IEEE Communications Letters, 12(4), 235–237.

    Article  Google Scholar 

  18. Ahmed, I., Nasri, A., Michalopoulos, D. S., Schober, R., & Mallik, R. K. (2012). Relay subset selection and fair power allocation for best and partial relay selection in generic noise and interference. IEEE Transactions on Wireless Communications, 11(5), 1828–1839.

    Article  Google Scholar 

  19. Bahadori-Jahromi, Farhad, Pourmina, Mohammad Ali, & Masnadi-Shirazi, Mohammad Ali. (2013). Concatenation of space-time block codes with constellation rearrangement. Arabian Journal for Science and Engineering, 38(10), 2703–2712.

    Article  Google Scholar 

  20. Bahadori-Jahromi, Farhad, Pourmina, Mohammad Ali, & Masnadi-Shirazi, Mohammad Ali. (2014). Performance of cooperative spatial multiplexing SISO/MIMO communication systems with constellation rearrangement technique. Arabian Journal for Science and Engineering, 39(2), 1067–1078.

    Article  Google Scholar 

  21. Chen, Y., Qin, F., Xing, Y., & Buranapanichkit, D. (2014). Cross-layer optimization scheme using cooperative diversity for reliable data transfer in wireless sensor networks. International Journal of Distributed Sensor Networks, 2014. doi:10.1155/2014/714090.

  22. Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  23. Tannenbaum, A. S. (2003). Computer networks (4th ed.). Upper Saddle River: Prentice Hall.

    Google Scholar 

  24. Wu, D., Cai, Y., Zhou, L., & Wang, J. (2012). A cooperative communication scheme based on coalition formation game in clustered wireless sensor networks. IEEE Transactions on Wireless Communications, 11(3), 1190–1200.

    Article  Google Scholar 

  25. Habibi, J., Ghrayeb, A., & Aghdam, A. (2013). Energy-efficient cooperative routing in wireless sensor networks: a mixed-integer optimization framework and explicit solution. IEEE Transactions on Communications, 61(8), 3424–3437.

    Article  Google Scholar 

  26. Moore, E. F. (1957). The shortest path through a maze. In Proceedings of the international symposium on theory of switching, pp. 285–292.

  27. Ibrahim, A. S., Han, Z., & Liu, K. J. R. (2008). Distributed energy efficient cooperative routing in wireless networks. IEEE Transactions on Wireless Communications, 7(10), 3930–3941.

    Article  Google Scholar 

  28. Kwon, Hojoong, Kim, Tae Hyun, Choi, Sunghyun, & Lee, Byeong Gi. (2006). A cross-layer strategy for energy-efficient reliable delivery in wireless sensor networks. IEEE Transactions on Wireless Communications, 5(12), 3689–3699.

    Article  Google Scholar 

  29. Rhee, I., Warrier, A., Aia, M., Min, J., & Sichitiu, M. L. (2008). Z-MAC: a hybrid mac for wireless sensor networks. IEEE/ACM Transactions on Networking, 16(3), 511–524.

    Article  Google Scholar 

  30. Cui, S., Madan, R., Goldsmith, A. J., & Lall, S. (2007). Cross-layer energy and delay optimization in small-scale sensor networks. IEEE Transactions on Wireless Communications, 6(10), 3688–3699.

    Article  Google Scholar 

  31. Shi, L., & Fapojuwo, A. O. (2010). TDMA scheduling with optimized energy efficiency and minimum delay in clustered wireless sensor networks. IEEE Transactions on Mobile Computing, 9(7), 927–940.

    Article  Google Scholar 

  32. Rudafshani, M., Datta, S. (2007) Localization in wireless sensor networks. In: ACM/IEEE IPSN’07, Cambridge, Massachusetts, USA, April 2007.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhad Bahadori-Jahromi.

Appendix

Appendix

1.1 Proof of (40)

Consider Specified block in Fig. 2; the probability that the source m transmits only, denoted by \(\Pr (\psi )\), is computed as

$$\begin{aligned} \Pr (\psi ) & = 1 - \Pr \left( {I_{m,n} \le R^{CT} } \right) + \Pr \left( {I_{m,n} \le R^{CT} } \right)\Pr \left( {I_{m,r} \le R^{CT} } \right) \\ & = 1 - \exp \left( { - h_{CT} d_{mn}^{\gamma } } \right) + \exp \left( { - h_{CT} \left( {d_{mr}^{\gamma } + d_{mn}^{\gamma } } \right)} \right) \\ & = 1 - \exp \left( { - h_{CT} d_{mn}^{\gamma } } \right)\left[ {1 - \exp \left( { - h_{CT} (d_{mr}^{\gamma } )} \right)} \right]. \\ \end{aligned}$$
(63)

where the term \(1 - \Pr \left( {I_{m,n} \le R^{CT} } \right)\) denotes the event when the sender-receiver channel is not in failure, while the other term corresponds to the event when both the sender receiver and the sender-relay channels are in failure. The probability that the relay collaborates with the source is as follow:

$$\overline{\Pr (\psi )} \ge 1 - \Pr (\psi ).$$
(64)

Thus, the average transmission rate of the cooperative transmission mode can be computed as

$$R_{av} = R^{CT} \cdot \Pr (\psi ) + \frac{{R^{CT} }}{2} \cdot \overline{\Pr (\psi )} = \frac{{R^{CT} }}{2}\left( {1 - \Pr (\psi )} \right).$$
(65)

where \(R^{CT}\) denotes the transmission rate if the sender is sending alone in one time slot, and \(R^{CT} /2\) denotes the transmission rate if the relay collaborates with the sender in the following time slot. Since

$$\begin{aligned} \exp \left( { - h_{CT} d_{mn}^{\gamma } } \right) \le 1\,, \hfill \\ 1 - \exp \left( { - h_{CT} d_{mr}^{\gamma } } \right) \le h_{CT} d_{mr}^{\gamma } . \hfill \\ \end{aligned}$$
(66)

Thus

$$\Pr (\psi ) \ge 1 - h_{CT} d_{mr}^{\gamma } .$$
(67)

Using (39)

$$h_{CT} = \frac{{z_{CT} }}{{P_{m}^{CT} }} = \left( {\log QOS_{{}}^{ - 1} } \right)^{ - 1/2} \cdot \frac{1}{{\left[ {\sum\nolimits_{m = 1}^{L} {d_{eq,m}^{1/3} } } \right]^{1/2} d_{eq,m}^{1/3} }}.$$
(68)

There is

$$\Pr (\psi ) \ge 1 - \left( {\log QOS_{{}}^{ - 1} } \right)^{ - 1/2} \cdot \frac{1}{{\left[ {\sum\nolimits_{m = 1}^{L} {x_{m}^{1/3} } } \right]^{1/2} x_{m}^{1/3} }},$$
(69)

where

$$x_{m} = \frac{{d_{eq,m} }}{{d_{mr}^{2\gamma } }} = \frac{{d_{mn}^{\gamma } \left( {d_{mr}^{\gamma } + d_{rn}^{\gamma } } \right)}}{{d_{mr}^{2\gamma } }} \ge 1.$$
(70)

Thus, we have

$$\Pr (\psi ) \ge 1 - \sqrt {\frac{{\log QOS^{ - 1} }}{L}} .$$
(71)

where L is the number of hops of the route. Thus

$$R^{CT} = \frac{{2R_{av} }}{1 + \Pr (\psi )} \le \frac{{2R_{failure} }}{{2 - \sqrt {\frac{{\log QOS^{ - 1} }}{L}} }}.$$
(72)

So to ensure the fulfillment of desired total transmission rate \(R^{CT}\) should be at least

$$R^{CT} = \frac{{2R_{failure} }}{{2 - \sqrt {\frac{{\log QOS^{ - 1} }}{L}} }}.$$
(73)

Consider the consumed power of the cooperative block.

$$P_{cb}^{CT} = P^{CT} \cdot \Pr (\psi ) + 2P^{CT} \cdot \overline{\Pr (\psi )} = P^{CT} \cdot \left( {2 - \Pr (\psi )} \right).$$
(74)

Using (39), the total transmission power of the route is

$$\begin{aligned} P_{tot}^{CT} & = \sum\limits_{m = 1}^{L} {P_{cb,m}^{CT} } \le \left( {1 + \sqrt {\frac{{\log QOS_{{}}^{ - 1} }}{L}} } \right)\sum\limits_{m = 1}^{L} {P_{m}^{CT} } \\ & = \left( {1 + \sqrt {\frac{{\log QOS_{{}}^{ - 1} }}{L}} } \right)(2^{{R^{CT} }} - 1)N_{0} (\log QOS^{ - 1} )^{ - 1/2} \cdot \left[ {\sum\limits_{m = 1}^{L} {d_{eq,m}^{1/3} } } \right]^{3/2} . \\ \end{aligned}$$
(75)

For the multiple-relay cooperation mode applying (29), there is

$$P_{m}^{CT} = \left( {2^{{R^{CT} }} - 1} \right)N_{0} \left( {\log QOS^{ - 1} } \right)^{ - 1/(R + 1)} \cdot \left[ {\sum\limits_{m = 1}^{L} {d_{eq,m}^{1/(R + 2)} } } \right]^{1/(R + 1)} \cdot d_{eq,m}^{1/(R + 2)} ,$$
(76)

and the total transmission power is

$$P_{tot}^{CT} = \left( {2^{{R^{CT} }} - 1} \right)\,N_{0} \,.\,\left( {\log QOS_{{}}^{ - 1} } \right)^{ - 1/(R + 1)} \,.\,\left[ {\sum\limits_{m = 1}^{L} {d_{eq,m}^{1/(R + 2)} } } \right]^{(R + 2)/(R + 1)} + \left( {2^{{R^{CT} }} - 1} \right)\,N_{0} \,\sum\limits_{m = 1}^{L} {d_{mn}^{\gamma } } .$$
(77)

Equations (39) and (76) show that the value of \(R^{CT}\) has a considerable effect on the transmission power. To minimize total transmission power, a minimum \(R^{CT}\) should be used to fulfill the desired total transmission data rate in (1).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahadori-Jahromi, F. Joint design of physical and MAC layer by applying the constellation rearrangement technique in cooperative multi-hop networks. Wireless Netw 23, 2361–2378 (2017). https://doi.org/10.1007/s11276-016-1292-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-016-1292-1

Keywords

Navigation