Skip to main content

Advertisement

Log in

Bioconversion of H2/CO2 by acetogen enriched cultures for acetate and ethanol production: the impact of pH

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Syngas fermentation into ethanol and other bioproducts by mixed cultures is considered a promising biotechnology. Effects of pH on product generation and microbial community during H2/CO2 utilization by acetogen enrichment cultures were investigated in this work. The maximum acetate concentration reached 95.41 mmol L−1 at pH 7, which was 71.7, 21.8 and 50.9 % higher than at pH 5, 9 and 11, respectively. The maximum ethanol concentration at pH 7 was 45.7, 50, 72 % higher than that at pH 5, 9 and 11, respectively. The CO dehydrogenase (CODH) gene copy number was highest at pH 7, indicating that metabolically active acetogens reached their highest level at pH 7. The CODH gene copy number at pH 9 was lower than at pH 7, but higher than at pH 5 and 11. Correspondingly, the enrichment cultures at pH 7 had the highest species richness and diversity, while those at pH 9 had the second highest diversity, and those at pH 5 and 11 had the lowest diversity. The shift in microbial community structure and the different active acetogen contents resulting from different pHs were responsible for the differences in acetate and ethanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmed A, Cateni BG, Huhnke RL, Lewis RS (2006) Effects of biomass-generated producer gas constituents on cell growth, product distribution and hydrogenase activity of Clostridium carboxidivorans P7(T). Biomass Bioenergy 30:665–672. doi:10.1016/j.biombioe.2006.01.007

    Article  CAS  Google Scholar 

  • Barik S, Prieto S, Harrison SB, Clausen EC, Gaddy JL (1988) Biological production of alcohols from coal through indirect liquefaction. Appl Biochem Biotechnol 18:363–378. doi:10.1007/BF02930840

    Article  CAS  Google Scholar 

  • Can M, Armstrong FA, Ragsdale SW (2014) Structure, function, and mechanism of the nickel metalloenzymes, CO dehydrogenase, and acetyl-CoA synthase. Chem Rev 114:4149–4174. doi:10.1021/cr400461p

    Article  CAS  Google Scholar 

  • Cata Saady MN (2013) Homoacetogenesis during hydrogen production by mixed cultures dark fermentation: unresolved challenge. Int J Hydrogen Energy 38:13172–13191. doi:10.1016/j.ijhydene.2013.07.122

    Article  Google Scholar 

  • Cotter JL, Chinn MS, Grunden AM (2009) Influence of process parameters on growth of Clostridium ljungdahlii and Clostridium autoethanogenum on synthesis gas. Enzyme Microb Technol 44:281–288. doi:10.1016/j.enzmictec.2008.11.002

    Article  CAS  Google Scholar 

  • Fast AG, Schmidt ED, Jones SW, Tracy BP (2015) Acetogenic mixotrophy: novel options for yield improvement in biofuels and biochemicals production. Curr Opin Biotechnol 33:60–72. doi:10.1016/j.copbio.2014.11.014

    Article  CAS  Google Scholar 

  • Henderson G, Naylor GE, Leahy SC, Janssen PH (2010) Presence of novel, potentially homoacetogenic bacteria in the rumen as determined by analysis of formyltetrahydrofolate synthetase sequences from ruminants. Appl Environ Microbiol 76:2058–2066. doi:10.1128/AEM.02580-09

    Article  CAS  Google Scholar 

  • Henstra AM, Sipma J, Rinzema A, Stams AJM (2007) Microbiology of synthesis gas fermentation for biofuel production. Curr Opin Biotechnol 18:200–206. doi:10.1016/j.copbio.2007.03.008

    Article  CAS  Google Scholar 

  • Kleerebezem R, van Loosdrecht MCM (2007) Mixed culture biotechnology for bioenergy production. Curr Opin Biotechnol 18:207–212. doi:10.1016/j.copbio.2007.05.001

    Article  CAS  Google Scholar 

  • Köpke M, Straub M, Dürre P (2013) Clostridium difficile is an autotrophic bacterial pathogen. PLoS One 8:e62157. doi:10.1371/journal.pone.0062157

    Article  Google Scholar 

  • Kundiyana DK, Huhnke RL, Maddipati P, Atiyeh HK, Wilkins MR (2010) Feasibility of incorporating cotton seed extract in Clostridium strain P11 fermentation medium during synthesis gas fermentation. Bioresour Technol 101:9673–9680. doi:10.1016/j.biortech.2010.07.054

    Article  CAS  Google Scholar 

  • Kundiyana DK, Wilkins MR, Maddipati P, Huhnke RL (2011) Effect of temperature, pH and buffer presence on ethanol production from synthesis gas by “Clostridium ragsdalei”. Bioresour Technol 102:5794–5799. doi:10.1016/j.biortech.2011.02.032

    Article  CAS  Google Scholar 

  • Leaphart AB, Lovell CR (2001) Recovery and analysis of formyltetrahydrofolate synthetase gene sequences from natural populations of acetogenic bacteria. Appl Environ Microbiol 67:1392–1395. doi:10.1128/AEM.67.3.1392-1395.2001

    Article  CAS  Google Scholar 

  • Lee MJ, Zinder SH (1988) Carbon monoxide pathway enzyme activities in a thermophilic anaerobic bacterium grown acetogenically and in a syntrophic acetate-oxidizing coculture. Arch Microbiol 150:513–518. doi:10.1007/BF00408241

    Article  CAS  Google Scholar 

  • Liggins M, Ramirez N, Magnuson N, Abel-Santos E (2011) Progesterone analogs influence germination of Clostridium sordellii and Clostridium difficile spores in vitro. J Bacteriol 193:2776–2783. doi:10.1128/JB.00058-11

    Article  CAS  Google Scholar 

  • Lovell CR, Leaphart AB (2005) Community-level analysis: key genes of CO2-reductive acetogenesis. Methods Enzymol 397:454–469. doi:10.1016/S0076-6879(05)97028-6

    Article  CAS  Google Scholar 

  • Matsuoka M, Park S, An SY, Miyahara M, Kim SW, Kamino K, Fushinobu S, Yokota A, Wakagi T, Shoun H (2012) Advenella faeciporci sp. nov., a nitrite-denitrifying bacterium isolated from nitrifying-denitrifying activated sludge collected from a laboratory-scale bioreactor treating piggery wastewater. Int J Syst Evol Microbiol 62:2986–2990. doi:10.1099/ijs.0.037440-0

    Article  CAS  Google Scholar 

  • Mohammadi M, Najafpour GD, Younesi H, Lahijani P, Uzir MH, Mohamed AR (2011) Bioconversion of synthesis gas to second generation biofuels: a review. Renew Sustain Energy Rev 15:4255–4273. doi:10.1016/j.rser.2011.07.124

    Article  CAS  Google Scholar 

  • Mohammadi M, Younesi H, Najafpour GD, Mohamed AR (2012) Sustainable ethanol fermentation from synthesis gas by Clostridium ljungdahlii in a continuous stirred tank bioreactor. J Chem Technol Biotechnol 87:837–843. doi:10.1002/jctb.3712

    Article  CAS  Google Scholar 

  • Phillips JR, Klasson KT, Clausen EC, Gaddy JL (1993) Biological production of ethanol from coal synthesis gas. Appl Biochem Biotechnol 39:559–571. doi:10.1007/BF02919018

    Article  Google Scholar 

  • Pikuta E, Lysenko A, Suzina N, Osipov G, Kuznetsov B, Tourova T, Akimenko V, Laurinavichius K (2000) Desulfotomaculum alkaliphilum sp nov., a new alkaliphilic, moderately thermophilic, sulfate-reducing bacterium. Int J Syst Evol Microbiol 50:25–33. doi:10.1099/00207713-50-1-25

    Article  CAS  Google Scholar 

  • Ryan P, Forbes C, Colleran E (2008) Investigation of the divisity of homoacetogenic bacteria in mesophilic and thermophilic anaerobic sludges using the formyltetrahydrofolate synthetase gene. Water Sci Technol 57:675–680. doi:10.2166/wst.2008.059

    Article  CAS  Google Scholar 

  • Sakai S, Nakashimada Y, Yoshimoto H, Watanabe S, Okada H, Nishio N (2004) Ethanol production from H2 and CO2 by a newly isolated thermophilic bacterium, Moorella sp. HUC22-1. Biotechnol Lett 26:1607–1612. doi:10.1023/B:BILE.0000045661.03366.f2

    Article  CAS  Google Scholar 

  • Schnürer A, Svensson BH, Schink B (1997) Enzyme activities in and energetics of acetate metabolism by the mesophilic syntrophically acetate-oxidizing anaerobe Clostridium ultunense. FEMS Microbiol Lett 154:331–336. doi:10.1111/j.1574-6968.1997.tb12664.x

    Article  Google Scholar 

  • Taherzadeh MJ, Niklasson C, Linden G (1997) Acetic acid-friend or foe in anaerobic batch conversion of glucose to ethanol by Saccharomyces cerevisiae. Chem Eng Sci 52:2653–2659. doi:10.1016/S0009-2509(97)00080-8

    Article  CAS  Google Scholar 

  • Ukpong MN, Atiyeh HK, De Lorme MJ, Liu K, Zhu X, Tanner RS, Wilkins MR, Stevenson BS (2012) Physiological response of Clostridium carboxidivorans during conversion of synthesis gas to solvents in a gas-fed bioreactor. Biotechnol Bioeng 109:2720–2728. doi:10.1002/bit.24549

    Article  CAS  Google Scholar 

  • Xu K, Liu H, Du G, Chen J (2009) Real-time PCR assays targeting formyltetrahydrofolate synthetase gene to enumerate acetogens in natural and engineered environments. Anaerobe 15:204–213. doi:10.1016/j.anaerobe

    Article  CAS  Google Scholar 

  • Xu K, Liu H, Li XF, Chen J, Wang AJ (2010) Typical methanogenic inhibitors can considerably alter bacterial populations and affect the interaction between fatty acid degraders and homoacetogens. Appl Microbiol Biotechnol 87:2267–2279. doi:10.1007/s00253-010-2708-y

    Article  CAS  Google Scholar 

  • Yutin N, Galperin MY (2013) A genomic update on clostridial phylogeny: gram-negative spore-formers and other misplaced clostridia. Environ Microbiol 15:2631–2641. doi:10.1111/1462-2920.12173

    CAS  Google Scholar 

  • Zhang X, Mandelco L, Wiegel J (1994) Clostridium hydroxybenzoicum sp. nov., an amino acid-utilizing, hydroxybenzoate-decarboxylating bacterium isolated from methanogenic freshwater pond sediment. Int J Syst Evol Microbiol 44:214–222. doi:10.1099/00207713-44-2-214

    CAS  Google Scholar 

  • Zuroff TR, Xiques SB, Curtis WR (2013) Consortia-mediated bioprocessing of cellulose to ethanol with a symbiotic Clostridium phytofermentans/yeast co-culture. Biotechnol Biofuels 6:59. doi:10.1186/1754-6834-6-59

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (No. 21206056), the Natural Science Foundation of Jiangsu Province of China (No. BK2012121), the National Natural Science Foundation of China (51208231), the National Natural Science Foundation of Jiangsu Province of China (BK20141112) and the Special Program for the Taihu Lake Protection of Jiangsu Province (JSZC-G2013-191).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Fu or He Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5464 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Fu, B., Zhang, L. et al. Bioconversion of H2/CO2 by acetogen enriched cultures for acetate and ethanol production: the impact of pH. World J Microbiol Biotechnol 31, 941–950 (2015). https://doi.org/10.1007/s11274-015-1848-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-015-1848-8

Keywords

Navigation