Skip to main content
Log in

Antifungal activity of volatile compounds-producing Pseudomonas P2 strain against Rhizoctonia solani

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Several volatile organic compounds (VOCs) producing endophyte bacteria were isolated from the leaves of olive trees and tested for their antifungal activity against several pathogenic fungi. An antagonistic strain called P2 showed 97 % of homology with Pseudomonas sp. strains on the basis of its 16S rDNA sequence and biochemical properties. P2 strain drastically inhibited the growth of Rhizoctonia solani mycelia (86 %) at 5 day-post-confrontation (dpc) and strongly reduced fungi infection on potato slices at 107 bacteria ml−1 for 3 and 7 dpc. P2 strain was also positive for protease activity as well as siderophore production. Light microscopy analysis showed that treatment of R. solani mycelia with P2 strain induced thickening of the cell-wall, vesiculation of protoplasm and blockage of fungal hyphae branching. VOCs analysis using GC–MS allowed the detection of two major products with m/z of 93.9910 and 125.9630 corresponding to dimethyl disulfide and dimethyl trisulfide respectively. VOCs-producing P2 strain could be a promising agent in the protection of tuber crops against fungal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    Article  CAS  Google Scholar 

  • Alstrom S, Burns RG (1989) Cyanide production by rhizobacteria as a possible mechanism of plant growth inhibition. Biol Fertil Soils 7:232–238

    Article  Google Scholar 

  • Ambrose C, Varghese C, Bhore SJ (2013) Endophytic bacteria as a source of novel antibiotics: an overview. Pharmacogn Rev 7:11–16

    Article  Google Scholar 

  • Arias-Cordero E, Ping L, Reichwald K, Delb H, Platzer M, Boland W (2012) Comparative evaluation of the gut microbiota associated with the below-and above- ground life stages (larvae and beetles) of the forest cockchafer, Melolontha hippocastani. PLoS One 7:1–10

    Article  Google Scholar 

  • Arrebola E, Sivakumar D, Korsten L (2010) Effect of volatile compounds produced by Bacillus strains on postharvest decay in citrus. Biol Control 53:122–128

    Article  CAS  Google Scholar 

  • Boukaew S, Plubrukam A, Prasertsan P (2013) Effect of volatile substances from Streptomyces philanthi RM-1-138 on growth of Rhizoctonia solani on rice leaf. Biocontrol 58:471–482

    Article  CAS  Google Scholar 

  • Chuankun X, Minghe M, Leming Z, Kegin Z (2004) Soil volatile fungistasis and volatile fungistatic compounds. Soil Biol Biochem 36:1997–2004

    Article  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Corcuff R, Mercier J, Tweddell R, Arul J (2011) Effect of water activity on the production of volatile organic compounds by Muscodor albus and their effect on three pathogens in stored potato. Fungal Biol 115:220–227

    Article  CAS  Google Scholar 

  • Djébali N, Belhassen T (2010) Field study of the relative susceptibility of eleven potato (Solanum tuberosum L.) varieties and the efficacy of two fungicides against Rhizoctonia solani attack. Crop Prot 29:998–1002

    Article  Google Scholar 

  • Djébali N, Elkahoui S, Taamalli W, Hessini K, Tarhouni B, Mrabet M (2014) Tunisian Rhizoctonia solani AG3 strains affect potato shoot macronutrients content, infect faba bean plants and show in vitro resistance to azoxystrobin. Australasian Plant Pathol 43:347–358

    Article  Google Scholar 

  • Do Carmo FL, dos Santos HF, Martins EF, van Elsas JD, Rosado AS, Peixoto RS (2011) Bacterial structure and characterization of plant growth promoting and oil degrading bacteria from the rhizospheres of mangrove plants. J Microbiol 49:535–543

    Article  CAS  Google Scholar 

  • El Bakali AM, Martín MP (2006) Black scurf of potato. Mycologist 20:130–132

    Article  Google Scholar 

  • Elkahoui S, Djébali N, Karkouch I, Hadj Ibrahim A, Kalai L, Bachkouel S, Tabbene O, Limam F (2014) Mass spectrometry identification of antifungal lipopeptides from Bacillus sp. BCLRB2 against Rhizoctonia Solani and Sclerotinia Sclerotiorum. Appl Biochem Microbiol 50:2161–2165

    Article  Google Scholar 

  • Fernando WGD, Ramarathnama R, Krishnamoorthy AS, Savchuk SC (2005) Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol Biochem 37:955–964

    Article  CAS  Google Scholar 

  • Fiddaman PJ, Rossall S (1993) The production of antifungal volatiles by Bacillus subtilis. J Appl Bacteriol 7:119–126

    Article  Google Scholar 

  • Fransen NG, O’Connell MB, Arendt EK (1997) A modified agar medium for the screening of proteolytic activity of starter cultures for meat fermentation purposes. Int J Food Microbiol 36:235–239

    Article  CAS  Google Scholar 

  • Goeminne PC, Vandendriessche T, Eldere JV, Nicolai BM, Hertog ML, Dupont LJ (2012) Detection of Pseudomonas aeruginosa in sputum headspace through volatile organic compound analysis. Respir Res 13:87

    Article  CAS  Google Scholar 

  • Huang CH, Vallad GE, Zhang S, Wen A, Balogh B, Figueiredo JFL, Behlau F, Jones JB, Momol MT, Olson SM (2012) Effect of application frequency and reduced rates of acibenzolar-S-methyl on the field efficacy of induced resistance against bacterial spot on tomato. Plant Dis 96:221–227

    Article  Google Scholar 

  • Junker RR, Tholl D (2013) Volatile organic compound mediated interactions at the plant–microbe interface. J Chem Ecol 39:810–825

    Article  CAS  Google Scholar 

  • Kai M, Effmert U, Berg G, Piechulla B (2007) Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Arch Microbiol 187:351–360

    Article  CAS  Google Scholar 

  • Krid S, Rhouma A, Mogou I, Quesada JM, Nesme X, Gargouri A (2010) Pseudomonas savastanoi endophytic bacteria in olive tree knots and antagonistic potential of strains of Pseudomonas fluorescens and Bacillus subtilis. J Plant Pathol 92:335–341

    Google Scholar 

  • Li QL, Ning P, Zheng L, Huang JB, Li GQ, Hsiang T (2010) Fumigant activity of volatiles of Streptomyces globisporus JK-1 against Penicillium italicum on Citrus microcarpa. Postharvest Biol Technol 58:157–165

    Article  CAS  Google Scholar 

  • Li Q, Ning P, Zheng L, Huang J, Li Q, Hsiang T (2012) Effects of volatile substances of Streptomyces globisporus JK-1 on control of Botrytis cinerea on tomato fruit. Biol Control 61:113–120

    Article  CAS  Google Scholar 

  • Liu W, Mu W, Zhu B, Liu F (2008) Antifungal activities and components of VOCs produced by Bacillus subtilis G8. Curr Res Bacteriol 1:28–34

    Article  CAS  Google Scholar 

  • Lodewyckx C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, Mezgeay M, Van Der Lelie D (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21:583–606

    Article  Google Scholar 

  • Lorck H (1948) Production of hydrocyanic acid by bacteria. Physiol Plant 1:142–146

    Article  CAS  Google Scholar 

  • Meldau DG, Meldau S, Hoang LH, Underberg S, Wünsche H, Baldwin IT (2013) Dimethyl disulfide produced by the naturally associated bacterium Bacillus sp B55 promotes Nicotiana attenuata growth by enhancing sulfur nutrition. Plant Cell 25:2731–2747

    Article  CAS  Google Scholar 

  • Mhamdi R, Laguerre G, Aouani ME, Mars M, Amarger N (2002) Different species and symbiotic genotypes of field rhizobia can nodulate Phaseolus vulgaris in Tunisian soils. FEMS Microbiol Ecol 41:77–84

    Article  CAS  Google Scholar 

  • Rieder J, Lirk P, Ebenbichler C, Gruber G, Prazeller P, Lindinger W, Amann A (2001) Analysis of volatile organic compounds: possible applications in metabolic disorders and cancer screening. Wien Klin Wochenschr 113:181–185

    CAS  Google Scholar 

  • Ryu CM, Farag M, Hu CH, Reddy MS, Wei HS, Pare P, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 100:4927–4932

    Article  CAS  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  CAS  Google Scholar 

  • Sethi S, Nanda R, Chakraborty T (2013) Clinical application of volatile organic compound analysis for detecting infectious diseases. Clin Microbiol Rev 26:462–475

    Article  CAS  Google Scholar 

  • Suwannarach N, Kumla J, Bussaban B, Nuangmek W, Matsui K, Lumyong S (2013) Biofumigation with the endophytic fungus Nodulisporium spp. CMU-UPE34 to control postharvest decay of citrus fruit. Crop Prot 45:63–70

    Article  CAS  Google Scholar 

  • Tait E, Perry JD, Stanforth SP, Dean JR (2014) Use of volatile compounds as a diagnostic tool for the detection of pathogenic bacteria. Trends Anal Chem 53:117–125

    Article  CAS  Google Scholar 

  • Tenorio-Salgado S, Tinoco R, Vazquez-Duhalt R, Caballero-Mellado J, Perez-Rueda E (2013) Identification of volatile compounds produced by the bacterium Burkholderia tropica that inhibit the growth of fungal pathogens. Bioengineered 4:236–243

    Article  Google Scholar 

  • Ting ASY, Mah SW, Tee CS (2011) Detection of potential volatile inhibitory compounds produced by endobacteria with biocontrol properties towards Fusarium oxysporum f. sp. cubense race 4. World J Microbiol Biotechnol 27:229–235

    Article  Google Scholar 

  • Van Loon LC (2000) Systemic induced resistance. In: Slusarenko AJ, Fraser RSS and Van Loon LC (eds) Mechanisms of resistance to plant diseases. Kluwer Academic Publishers, Dordrecht, pp 521–574

  • Verma SC, Ladha JK, Tripathi AK (2001) Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J Biotechnol 91:127–141

    Article  CAS  Google Scholar 

  • Wang C, Wang Z, Qiao X, Li Z, Li F, Chen M, Wang Y, Huang Y, Cui H (2013) Antifungal activity of volatile organic compounds from Streptomyces alboflavus TD-1. FEMS Microbiol Lett 341:45–51

    Article  CAS  Google Scholar 

  • Weise T, Kai M, Gummesson A, Troeger A, von Reuß S, Piepenborn S, Kosterka F, Sklorz M, Zimmermann R, Francke W, Piechulla B (2012) Volatile organic compounds produced by the phytopathogenic bacterium Xanthomonas campestris pv. vesicatoria 85-10. Beilstein J Org Chem 8:579–596

    Article  CAS  Google Scholar 

  • Wheatley RE (2002) The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie Van Leeuwenhoek 81:357–364

    Article  CAS  Google Scholar 

  • Wilkins K, Larsen K, Simkus M (2000) Volatile metabolites from mold growth on building materials and synthetic media. Chemosphere 41:437–446

    Article  CAS  Google Scholar 

  • Wirth SJ, Wolf GA (1990) Dye-labelled substrates for the assay and detection of chitinase and lysozyme activity. J Microbiol Methods 12:197–205

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by grants from the Tunisian Ministry of Higher Education, Scientific Research, Technology Information and Communication. We would like to thank Prof. Ezzedine Aouani for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferid Limam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elkahoui, S., Djébali, N., Yaich, N. et al. Antifungal activity of volatile compounds-producing Pseudomonas P2 strain against Rhizoctonia solani . World J Microbiol Biotechnol 31, 175–185 (2015). https://doi.org/10.1007/s11274-014-1772-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-014-1772-3

Keywords

Navigation