Skip to main content
Log in

Detection of induced synthesis of colicin E9 using ColE9p::gfpmut2 based reporter system

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The majority of colicin operons are regulated by an SOS response inducible promoter (SOS promoter), located at upstream of the colicin operons. Therefore, colicin synthesis is induced by DNA damaging agents like mitomycin C (MMC) because the resulting DNA damage switches on the SOS response in bacteria. In this study, we have described the strategy for fusion of the SOS promoter of the colicin E9 operon (ColE9p) with a promoterless green fluorescent reporter gene (gfpmut2). We observed that the ColE9pgfpmut2 is inducible by MMC which confirmed that the ColE9pgfpmut2 is sensitive to SOS response inducing agents. The data implies that the ColE9pgfpmut2 based reporter system is suitable for monitoring the ColE9 synthesis induced by SOS response inducing agents including antibiotics. Using green fluorescent protein expression from the ColE9pgfpmut2 as an indicator of ColE9 synthesis; we have investigated, first time, the inducing effects of cephalexin antibiotic on ColE9 synthesis. Our data demonstrated that the cephalexin has potential to induce ColE9 synthesis from E. coli JM83 host cells albeit the level of this induction is very low hence its detection required a highly sensitive method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andrews JM (2001) Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48(Suppl 1):5–16

    Article  CAS  Google Scholar 

  • Bano S, Vankemmelbeke M, Penfold CN, James R (2013) Pattern of induction of colicin E9 synthesis by sub MIC of Norfloxacin antibiotic. Microbiol Res 168:661–666

    Google Scholar 

  • Blazquez J, Gomez-Gomez JM, Oliver A, Juan C, Kapur V, Martin S (2006) PBP3 inhibition elicits adaptive responses in Pseudomonas aeruginosa. Mol Microbiol 62:84–99

    Article  CAS  Google Scholar 

  • Brons-Poulsen J, Petersen NE, Horder M, Kristiansen K (1998) An improved PCR-based method for site directed mutagenesis using megaprimers. Mol Cell Probes 12:345–348

    Article  CAS  Google Scholar 

  • Chak KF, James R (1984) Localization and characterization of a gene on the ColE3-CA38 plasmid that confers immunity to colicin E8. J Gen Microbiol 130:701-710

    Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  CAS  Google Scholar 

  • Chang AC, Cohen SN (1978) Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol 134:1141–1156

    CAS  Google Scholar 

  • Cooper PC, James R (1984) Two new E colicins, E8 and E9, produced by a strain of Escherichia coli. J Gen Microbiol 130:209–215

    CAS  Google Scholar 

  • Cormack BP, Valdivia RH, Falkow S (1996) FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173:33–38

    Article  CAS  Google Scholar 

  • Di Masi DR, White JC, Schnaitman CA, Bradbeer C (1973) Transport of vitamin B12 in Escherichia coli: common receptor sites for vitamin B12 and the E colicins on the outer membrane of the cell envelope. J Bacteriol 115:506–513

    Google Scholar 

  • Ebina Y, Kishi F, Nakazawa T, Nakazawa A (1979) Gene expression in vitro of colicin El plasmid. Nucleic Acids Res 7:639–649

    Article  CAS  Google Scholar 

  • Ebina Y, Takahara Y, Kishi F, Nakazawa A, Brent R (1983) LexA protein is a repressor of the colicin E1 gene. J Biol Chem 258:13258–13261

    CAS  Google Scholar 

  • Erill I, Escribano M, Campoy S, Barbe J (2003) In silico analysis reveals substantial variability in the gene contents of the gamma proteobacteria LexA-regulon. Bioinformatics 19:2225–2236

    Article  CAS  Google Scholar 

  • Gillor O, Vriezen JA, Riley MA (2008) The role of SOS boxes in enteric bacteriocin regulation. Microbiology 154:1783–1792

    Article  CAS  Google Scholar 

  • Goh EB, Yim G, Tsui W, McClure J, Surette MG, Davies J (2002) Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. Proc Natl Acad Sci USA 99:17025–17030

    Article  CAS  Google Scholar 

  • Hardy KG, Meynell GG (1972) “Induction” of colicin factor E2-P9 by mitomycin C. J Bacteriol 112:1007–1009

    CAS  Google Scholar 

  • Jerman B, Butala M, Zgur-Bertok D (2005) Sublethal concentrations of ciprofloxacin induce bacteriocin synthesis in Escherichia coli. Antimicrob Agents Chemother 49:3087–3090

    Article  CAS  Google Scholar 

  • Kalir S, McClure J, Pabbaraju K, Southward C, Ronen M, Leibler S, Surette MG, Alon U (2001) Ordering genes in a flagella pathway by analysis of expression kinetics from living bacteria. Science 292:2080–2083

    Article  CAS  Google Scholar 

  • Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ (2007) A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130:797–810

    Article  CAS  Google Scholar 

  • Lu FM, Chak KF (1996) Two overlapping SOS-boxes in ColE operons are responsible for the viability of cells harboring the Col plasmid. Mol Gen Genet 251:407–411

    Article  CAS  Google Scholar 

  • McCool JD, Long E, Petrosino JF, Sandler HA, Rosenberg SM, Sandler SJ (2004) Measurement of SOS expression in individual Escherichia coli K-12 cells using fluorescence microscopy. Mol Microbiol 53:1343–1357

    Article  CAS  Google Scholar 

  • Miller C, Ingmer H, Thomsen LE, Skarstad K, Cohen SN (2003) DpiA binding to the replication origin of Escherichia coli plasmids and chromosomes destabilizes plasmid inheritance and induces the bacterial SOS response. J Bacteriol 185:6025–6031

    Article  CAS  Google Scholar 

  • Miller C, Thomsen LE, Gaggero C, Mosseri R, Ingmer H, Cohen SN (2004) SOS response induction by beta-lactams and bacterial defense against antibiotic lethality. Science 305:1629–1631

    Article  CAS  Google Scholar 

  • Mrak P, Podlesek Z, van Putten JP, Zgur-Bertok D (2007) Heterogeneity in expression of the Escherichia coli colicin K activity gene cka is controlled by the SOS system and stochastic factors. Mol Genet Genomics 277:391–401

    Article  CAS  Google Scholar 

  • Naylor LH (1999) Reporter gene technology: the future looks bright. Biochem Pharmacol 58:749–757

    Article  CAS  Google Scholar 

  • Norman A, Hestbjerg Hansen L, Sorensen SJ (2005) Construction of a ColD cda promoter-based SOS-green fluorescent protein whole-cell biosensor with higher sensitivity toward genotoxic compounds than constructs based on recA, umuDC, or sulA promoters. Appl Environ Microbiol 71:2338–2346

    Article  CAS  Google Scholar 

  • Penfold CN, Garinot-Schneider C, Hemmings AM, Moore GR, Kleanthous C, James R (2000) A 76-residue polypeptide of colicin E9 confers receptor specificity and inhibits the growth of vitamin B12-dependent Escherichia coli 113/3 cells. Mol Microbiol 38:639–649

    Google Scholar 

  • Ronen M, Rosenberg R, Shraiman BI, Alon U (2002) Assigning numbers to the arrows: parameterizing a gene regulation network by using accurate expression kinetics. Proc Natl Acad Sci USA 99:10555–10560

    Article  CAS  Google Scholar 

  • Sambrook J, Maniatis T et al (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Silhavy TJ (2000) Gene fusions. J Bacteriol 182:5935–5938

    Article  CAS  Google Scholar 

  • Southward CM, Surette MG (2002) The dynamic microbe: green fluorescent protein brings bacteria to light. Mol Microbiol 45:1191–1196

    Article  CAS  Google Scholar 

  • van Vliet AH, Wooldridge KG, Ketley JM (1998) Iron-responsive gene regulation in a Campylobacter jejuni fur mutant. J Bacteriol 180:5291–5298

    Google Scholar 

  • Vankemmelbeke M, Healy B, Moore GR, Kleanthous C, Penfold CN, James R (2005) Rapid detection of colicin E9-induced DNA damage using Escherichia coli cells carrying SOS promoter-lux fusions. J Bacteriol 187:4900–4907

    Article  CAS  Google Scholar 

  • Zaslaver A, Bren A, Ronen M, Itzkovitz S, Kikoin I, Shavit S, Liebermeister W, Surette MG, Alon U (2006) A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nat Methods 3:623–628

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr Adrian Robins for providing us flow cytometry facility and expertise during the flow cytometry measurements for this study. We are also thankful to university of Sindh, Jamshoro, Pakistan for granting PhD funding to S. Bano and university of Nottingham for providing funds for experimental work described in this report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaista Bano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bano, S., Vankemmelbeke, M., Penfold, C.N. et al. Detection of induced synthesis of colicin E9 using ColE9p::gfpmut2 based reporter system. World J Microbiol Biotechnol 30, 2091–2099 (2014). https://doi.org/10.1007/s11274-014-1635-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-014-1635-y

Keywords

Navigation