Skip to main content
Log in

Heterogeneity in expression of the Escherichia coli colicin K activity gene cka is controlled by the SOS system and stochastic factors

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Phenotypic diversity provides populations of prokaryotic and eukaryotic organisms with the flexibility required to adapt to and/or survive environmental perturbations. Consequently, there is much interest in unraveling the molecular mechanisms of heterogeneity. A classical example of heterogeneity in Escherichia coli is the subset (3%) of the population that expresses the colicin K activity gene (cka) upon nutrient starvation. Here, we report on the mechanism underlying this variable response. As colicin synthesis is regulated by the LexA protein, the central regulator of the SOS response, we focused on the role of LexA and the SOS system in the variable cka expression. Real-time RT-PCR showed that the SOS system, without exogenous DNA damage, induces moderate levels of cka expression. The use of cka–gfp fusions demonstrated that modification of the conserved LexA boxes in the cka promoter region affected LexA binding affinity and the percentage of cka–gfp expressing cells in the population. A lexA–gfp fusion showed that the lexA gene is highly expressed in a subset of bacteria. Furthermore, cka–gfp fusions cloned into higher copy plasmid vectors increased the percentage of cka–gfp positive bacteria. Together, these results indicate that the bistability in cka expression in the bacterial population is determined by (1) basal SOS activity, (2) stochastic factors and possibly (3) the interplay of LexA dimers at cka operator. Other LexA regulated processes could exhibit similar regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ebina Y, Takahara Y, Shirabe K, Yamada M, Nakazawa T, Nakazawa A (1983) Plasmid-encoded regulation of colicin E1 gene expression. J Bacteriol 156:487–492

    PubMed  CAS  Google Scholar 

  • Erill I, Escribano M, Campoy S, Barbé J (2003) In silico analysis reveals substantial variability in the gene contents of the gamma proteobacteria LexA-regulon. Bioinformatics 19:2225–2236

    Article  PubMed  CAS  Google Scholar 

  • Fernández De Henestrosa AR, Ogi T, Aoyagi S, Chafin D, Hayes JJ, Ohmori H, Woodgate R (2001) Identification of additional genes belonging to the LexA regulon in Escherichia coli. Mol Microbiol 35:1560–1572

    Article  Google Scholar 

  • Ferrel JE Jr (2002) Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr Opin Cell Biol 14:140–148

    Article  Google Scholar 

  • Ferrel JE Jr, Machleder EM (1998) The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science 280:895–898

    Article  Google Scholar 

  • Ferrer S, Viejo M B, Guasch J F, Enfedaque J, Regue M (1996) Genetic evidence for an activator required for induction of colicin like bacteriocin 28b production in Serratia marcescens by DNA-damaging agents. J Bacteriol 178:951–960

    PubMed  CAS  Google Scholar 

  • Fraser HB, Hirsh AE, Giaver G, Kumm J, Eisen MB (2004) Noise minimization in eukaryotic gene expression. PLoS Biol 2:0834–0838

    CAS  Google Scholar 

  • Friedberg EC, Walker GC, Siede W (1995) DNA repair and mutagenesis. American society for microbiology, Washington DC

    Google Scholar 

  • Haijema BJ, Hahn J, Haynes J, Dubnau D (2001) A ComGA-dependent checkpoint limits growth during the escape from competence. Mol Microbiol 40:52–64

    Article  PubMed  CAS  Google Scholar 

  • Hernday A, Braaten BA, Low D (2003) The mechanism by which DNA adenine methylase and PapI activate the pap epigenetic switch. Mol Cell 12:947–957

    Article  PubMed  CAS  Google Scholar 

  • Jerman B, Butala M, Žgur-Bertok D (2005) Sublethal concentrations of ciprofloxacin induce bacteriocin synthesis in Escherichia coli. Antimicrob Agents Chemother 49:3087–3090

    Article  PubMed  CAS  Google Scholar 

  • Kirkup BC, Riley MA (2004) Antibiotic mediated antagonism leads to a bacterial game of rock-paper-scissors in vivo. Nature 428:412–414

    Article  PubMed  CAS  Google Scholar 

  • Kuhar I, Žgur-Bertok D (1999) Transcription regulation of the colicin K cka gene reveals induction of colicin synthesis by differential responses to environmental signals. J Bacteriol 181:7373–7380

    PubMed  CAS  Google Scholar 

  • Kuhar I, van Putten JP, Žgur-Bertok D, Gaastra W, Jordi BJ (2001) Codon-usage based regulation of colicin K synthesis by the stress alarmone ppGpp. Mol Microbiol 41:207–216

    Article  PubMed  CAS  Google Scholar 

  • Lewis KL, Harlow GR, Gregg-Jolly LA, Mount DW (1994) Identification of high affinity binding sites for LexA which define new DNA damage-inducible genes in Escherichia coli. J Mol Biol 241:507–523

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 −ΔΔC T method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lloubes R, Granger-Schnarr M, Lazdunski C, Schnarr M (1991) Interaction of a regulatory protein with a DNA target containing two overlapping binding sites. J Biol Chem 266:2303–2312

    PubMed  CAS  Google Scholar 

  • Lu FM, Chak KF (1996) Two overlapping SOS-boxes in ColE operons are responsible for the viability of cells harboring the Col plasmid. Mol Gen Genet 251:407–411

    Article  PubMed  CAS  Google Scholar 

  • Maamer H, Dubnau D (2005) Bistability in the Bacillus subtilis K-state (competence) system requires a positive feedback loop. Mol Microbiol 56:615–624

    Article  CAS  Google Scholar 

  • McAdams HH, Arkin A (1999) It’s a noisy business. Genetic regulation at the nanomolar scale. Trends Genet 15:65–69

    Article  PubMed  CAS  Google Scholar 

  • Michael SF (1994) Mutagenesis by incorporation of a phosphorylated oligo during PCR amplification. BioTechniques 16:409–412

    Google Scholar 

  • Michel-Briand Y, Baysee C (2002) The pyocins of Pseudomonas aeruginosa. Biochimie 84:499–510

    Article  PubMed  CAS  Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Mulec J, Podlesek Z, Mrak P, Kopitar A, Ihan A, Žgur-Bertok D (2003) A cka–gfp transcriptional fusion reveals that the colicin K activity gene is induced in only 3 percent of the population. J Bacteriol 185:654–659

    Article  PubMed  CAS  Google Scholar 

  • Novick A, Weiner M (1957) Enzyme induction as an all-or-none phenomenon. Proc Natl Acad Sci USA 43:553–567

    Article  PubMed  CAS  Google Scholar 

  • Ozbudak EM, Thattai M, Kurster I, Grossman AD, van Oudenaarden A (2002) Regulation of noise in the expression of a single cell. Nat Genet 31:69–73

    Article  PubMed  CAS  Google Scholar 

  • Pilsl H, Braun V (1995) Strong function-related homology between the pore-forming colicins K and 5. J Bacteriol 177:6973–6977

    PubMed  CAS  Google Scholar 

  • Riley MA, Wertz JE (2002) Bacteriocins: evolution, ecology and application. Annu Rev Microbiol 56:117–137

    Article  PubMed  CAS  Google Scholar 

  • Riley MA, Pinou T, Wertz JE, Tan Y, Valletta CM (2001) Molecular characterization of the klebicin b plasmid of Klebsiella pneumoniae. Plasmid 45:209–221

    Article  PubMed  CAS  Google Scholar 

  • Ronen M, Rosenberg R, Shraiman BI, Alon U (2002) Assigning numbers to the arrows: parametrizing a gene regulation network by accurate expression kinetics. Proc Natl Acad Sci USA 99:10555–10560

    Article  PubMed  CAS  Google Scholar 

  • Salles B, Weisemann JM, Weinstock GM (1987) Temporal control of colicin E1 induction. J Bacteriol 169:5028–5034

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Schneider K, Beck CF (1986) Promoter-probe vectors for the analysis of divergently arranged promoters. Gene 42:37–48

    Article  PubMed  CAS  Google Scholar 

  • Sonenshein AL (2000) Control of sporulation initiation in Bacillus subtilis. Curr Opin Microbiol 3:561–566

    Article  PubMed  CAS  Google Scholar 

  • Suarez A, Güttller A, Strätz M, Staendner LH, Timmis KN, Guzmán CA (1997) Green fluorescent protein-based reporter system for genetic analysis of bacteria including monocopy applications. Gene 196:69–74

    Article  PubMed  CAS  Google Scholar 

  • Thattai M, van Oudenaarden A (2004) Stochastic gene expression in fluctuating environments. Genetics 167:523–530

    Article  PubMed  Google Scholar 

  • Wertman KF, Mount DW (1985) Nucleotide sequence binding specificity of the LexA repressor of Escherichia coli K-12. J Bacteriol 163:376–384

    PubMed  CAS  Google Scholar 

  • Wertz JE, Riley MA (2004) Chimeric nature of two plasmids of Hafnia alvei encoding the bacteriocins alveicins A and B. J Bacteriol 186:1598–1605

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Roger Woodgate for generously providing strains RW118 and RW464 as well as the LexA protein and Uri Alon for strain AB1157 carrying the lexA–gfp fusion. Irena Kuhar and John Little are acknowledged for insightful comments. This work was supported by grant P0-0508-0487 from the Slovene Ministry of Higher Education and Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darja Žgur-Bertok.

Additional information

Communicated by D. Andersson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mrak, P., Podlesek, Z., van Putten, J.P.M. et al. Heterogeneity in expression of the Escherichia coli colicin K activity gene cka is controlled by the SOS system and stochastic factors. Mol Genet Genomics 277, 391–401 (2007). https://doi.org/10.1007/s00438-006-0185-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-006-0185-x

Keywords

Navigation