Skip to main content
Log in

Simulation of Lubricant Recovery After Heat-Assisted Magnetic Recording Writing

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The lubricant in a heat-assisted magnetic recording (HAMR) hard disk drive must be able to withstand the writing process in which the disk is locally heated a few hundred degrees Celsius within a few nanoseconds and be able to sufficiently recover the lubricant depletion and accumulation zones so as to allow for stable flying heights and reliable read/write performance. In a previous publication, we simulated the distortion of thin Zdol films due to a thermal spot during HAMR writing and predicted several Angstroms of depletion. In this paper, we continue these simulations into recovery. Our simulation results indicate that lubricant deformation caused by small thermal spots of 20-nm full-width half-maximum (FWHM) recover on the order of 100–1,000 times faster than larger 1-μm FWHM spots. However, the lubricant is unable to recover from sufficiently high writing temperatures. An optimal thickness at which HAMR writing deformation recovers fastest is apparent for sub-100-nm FWHM thermal spots. Our simulations show that simple scaling of experimental observations using optical laser spots of diameters close to 1 μm to predict lubricant phenomena induced by thermal spots close to 20-nm FWHM may not be valid. Researchers should be aware of the possibility of different lubricant behavior at small scales when designing and developing the HAMR head-disk interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rottmayer, R., Batra, S., Buechel, D., Challener, W., Hohlfeld, J., Kubota, Y., Li, L., Lu, B., Mihalcea, C., Mountfield, K., Pelhos, K., Peng, C., Rausch, T., Seigler, M., Weller, D., Yang, X.: Heat-assisted magnetic recording. IEEE Trans. Magn. 42, 2417–2421 (2006)

    Article  Google Scholar 

  2. Kryder, M., Gage, E., McDaniel, T., Challener, W., Rottmayer, R., Ju, G., Hsia, Y.T., Erden, M.: Heat assisted magnetic recording. Proc. IEEE 96, 1810–1835 (2008)

    Article  CAS  Google Scholar 

  3. International Technical Roadmap: Magnetic Data Storage—the technology of magnetic hard disk drives (HDDs). Tech. rep., IDEMA Advanced Storage Technology Committee (ASTC) (2013)

  4. Dahl, J.B., Bogy, D.B.: Lubricant flow and evaporation model for heat assisted magnetic recording including functional end-group effects and thin film viscosity. Tribol. Lett. (2013). doi:10.1007/s11249-013-0190-2

  5. Shukla N., Gellman A.J., Gui J.: The interaction of CF 3CH 2OH and (CF 3CF 2) 2O with amorphous carbon films. Langmuir, 16, 6562–6568 (2000)

    Article  CAS  Google Scholar 

  6. Guo, X., Knigge, B., Marchon, B., Waltman, R.J., Carter, M., Burns, J.: Multidentate functionalized lubricant for ultralow head/disk spacing in a disk drive. J. Appl. Phys. 100, 044, 306 (2006)

    Google Scholar 

  7. Ma, Y., Chen, X.Y., Zhao, J.M., Yu, S.K., Liu, B., Seet, H.L., Ng, K.K., Hu, J.F., Shi, J.Z.: Experimental study of lubricant depletion in heat assisted magnetic recording. IEEE Trans. Magn. 48, 1813–1818 (2012)

    Article  Google Scholar 

  8. Ma, Y., Chen, X., Liu, B.: Experimental study of lubricant depletion in heat assisted magnetic recording over the lifetime of the drive. Tribol. Lett. 47, 175–182 (2012)

    Article  CAS  Google Scholar 

  9. Karis, T.E., Kim, W., Jhon, M.: Spreading and dewetting in nanoscale lubrication. Tribol. Lett. 18, 27–41 (2005)

    Article  CAS  Google Scholar 

  10. Ma, X., Gui, J., Smoliar, L., Grannen, K., Marchon, B., Bauer, C., Jhon, M.: Complex terraced spreading of perfluoropolyalkylether films on carbon surfaces. Phys. Rev. E 59, 722–727 (1999)

    Article  CAS  Google Scholar 

  11. Dai, Q., Saint-Olive, C., Pit, R., Marchon, B.: Genesis and evolution of lubricant moguls. IEEE Trans. Magn. 38, 2111–2113 (2002)

    Article  Google Scholar 

  12. Dai, Q., Knigge, B.E., Waltman, R.J., Marchon, B.: Time evolution of lubricant-slider dynamic interactions. IEEE Trans. Magn. 39, 2459–2461 (2003)

    Article  CAS  Google Scholar 

  13. Pit, R., Zeng, Q.H., Dai, Q., Marchon, B.: Experimental study of lubricant-slider interactions. IEEE Trans. Magn. 39, 740–742 (2003)

    Article  Google Scholar 

  14. Dai, Q., Hendriks, F., Marchon, B.: Washboard effect at head-disk interface. IEEE Trans. Magn. 40, 3159–3161 (2004)

    Article  Google Scholar 

  15. Ji, R., Dao, T.K.L., Xu, B.X., Xu, J.W., Goh, B.L., Tan, E., Xie, H.Q., Liew, T.: Lubricant pickup under laser irradiation. IEEE Trans. Magn. 47, 1988–1991 (2011)

    Article  CAS  Google Scholar 

  16. Mate, C.M.: Application of disjoining and capillary pressure to liquid lubricant films in magnetic recording. J. Appl. Phys. 72, 3084–3090 (1992)

    Article  CAS  Google Scholar 

  17. Ma, X., Gui, J., Marchon, B., Jhon, M., Bauer, C.L., Rauch, G.C.: Lubricant replenishment on carbon coated discs. IEEE Trans. Magn. 35, 2454–2456 (1999)

    Article  CAS  Google Scholar 

  18. Wu, L.: Modelling and simulation of the lubricant depletion process induced by laser heating in heat-assisted magnetic recording system. Nanotechnology 18, 215, 702 (2007)

    Google Scholar 

  19. Wu, L., Talke, F.E.: Modeling laser induced lubricant depletion in heat-assisted-magnetic recording systems using a multiple-layered disk structure. Microsyst. Technol. 17, 1109–1114 (2011)

    Article  CAS  Google Scholar 

  20. Ma, Y., Gonzaga, L., An, C., Liu, B.: Effect of laser heating duration on lubricant depletion in heat assisted magnetic recording. IEEE Trans. Magn. 47, 3445–3448 (2011)

    Article  Google Scholar 

  21. Mate, C., Marchon, B.: Shear response of molecularly thin liquid films to an applied air stress. Phys. Rev. Lett. 85, 3902–3905 (2000)

    Article  CAS  Google Scholar 

  22. Scarpulla, M., Mate, C., Carter, M.: Air shear driven flow of thin perfluoropolyether polymer films. J. Chem. Phys. 118, 3368–3375 (2003)

    Article  CAS  Google Scholar 

  23. Marchon, B., Saito, Y.: Lubricant thermodiffusion in heat assisted magnetic recording. IEEE Trans. Magn. 48, 4471–4474 (2012)

    Article  Google Scholar 

  24. Karis, T.: Lubricants for the disk drive industry. In: Rudnick, L. (ed.) Lubricant Additives: Chemistry and Applications, chap. 22, pp. 523–584. CRC Press, NY (2009)

    Chapter  Google Scholar 

  25. Oron, A., Davis, S., Bankoff, S.: Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69, 931–980 (1997)

    Article  CAS  Google Scholar 

  26. Zhou, W., Zeng, Y., Liu, B., Yu, S., Hua, W., Huang, X.: Evaporation of polydisperse perfluoropolyether lubricants in heat-assisted magnetic recording. Appl. Phys. Express 4, 095, 201 (2011)

    Google Scholar 

  27. Zeng, Y., Zhou, W., Huang, X., Yu, S.: Numerical study on thermal-induced lubricant depletion in laser heat-assisted magnetic recording systems. Int. J. Heat Mass Transf. 55, 886–896 (2012)

    Article  CAS  Google Scholar 

  28. Batchelor, G.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1967)

    Google Scholar 

  29. Mate, C.M.: Taking a fresh look at disjoining pressure of lubricants at slider-disk interfaces. IEEE Trans. Magn. 47, 124–130 (2011)

    Article  Google Scholar 

  30. Karis, T., Tyndall, G.: Calculation of spreading profiles for molecularly-thin films from surface energy gradients. J. Non-Newton. Fluid Mech. 82, 287–302 (1999)

    Article  CAS  Google Scholar 

  31. Tyndall, G.W., Leezenberg, P., Waltman, R.J., Castenada, J.: Interfacial interactions of perfluoropolyether lubricants with magnetic recording media. Tribol. Lett. 4, 103–108 (1998)

    Article  CAS  Google Scholar 

  32. Tyndall, G.W., Waltman, R.J., Pocker, D.: Concerning the interactions between Zdol perfluoropolyether lubricant and an amorphous-nitrogenated carbon surface. Langmuir 14, 7527–7536 (1998)

    Article  CAS  Google Scholar 

  33. Waltman, R.J., Pocker, D., Tyndall, G.W.: Studies on the interactions between ZDOL perfluoropolyether lubricant and the carbon overcoat of rigid magnetic media. Tribol. Lett. 4, 267–275 (1998)

    Article  CAS  Google Scholar 

  34. Powell, R., Roseveare, W., Eyring, H.: Diffusion, thermal conductivity, and viscous flow of liquids. Ind. Eng. Chem. 33, 430–435 (1941)

    Article  CAS  Google Scholar 

  35. Karis, T., Marchon, B., Flores, V., Scarpulla, M.: Lubricant spin-off from magnetic recording disks. Tribol. Lett. 11, 151–159 (2001)

    Article  CAS  Google Scholar 

  36. Ruckenstein, E., Jain, R.K.: Spontaneous rupture of thin liquid films. J. Chem. Soc. Faraday Trans. 2(70), 132–147 (1974)

    Google Scholar 

  37. Kubotera, H., Bogy, D.: Numerical simulation of molecularly thin lubricant film flow due to the air bearing slider in hard disk drives. Microsyst. Technol. 13, 859–865 (2007). doi:10.1007/s00542-006-0275-z

    Article  CAS  Google Scholar 

  38. Patankar, S.: Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing Corporation, New York (1980)

    Google Scholar 

  39. Marchon, B.: Lubricant design attributes for subnanometer head-disk clearance. IEEE Trans. Magn. 45, 872–876 (2009)

    Article  CAS  Google Scholar 

  40. Waltman, R.J.: The interactions between Z-tetraol perfluoropolyether lubricant and amorphous nitrogenated-and hydrogenated-carbon surfaces and silicon nitride. J. Fluor. Chem. 125, 391–400 (2004)

    Article  CAS  Google Scholar 

  41. Christensen, R.M.: Theory of Viscoelasticity, 2nd edn. Academic Press, Inc., New York (1982)

    Google Scholar 

  42. Lei, R., Gellman, A., Jones, P.: Thermal stability of Fomblin Z and Fomblin Zdol thin films on amorphous hydrogenated carbon. Tribol. Lett. 11, 1–5 (2001)

    Article  CAS  Google Scholar 

  43. Li, L., Jones, P., Hsia, Y.T.: Effect of chemical structure and molecular weight on high-temperature stability of some Fomblin Z-type lubricants. Tribol. Lett. 16, 21–27 (2004)

    Article  Google Scholar 

  44. Marchon, B., Karis, T.E.: Poiseuille flow at a nanometer scale. Europhys. Lett. 74, 294–298 (2006)

    Article  CAS  Google Scholar 

  45. Smith, R.L., Jhon, Y.I., Biegler, L.T., Jhon, M.S.: An atomistic study of perfluoropolyether lubricant thermal stability in heat assisted magnetic recording. IEEE Trans. Magn. 49, 3748–3751 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Computer Mechanics Laboratory at University of California, Berkeley, Mechanical Engineering Department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Bechtel Dahl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahl, J.B., Bogy, D.B. Simulation of Lubricant Recovery After Heat-Assisted Magnetic Recording Writing. Tribol Lett 52, 163–174 (2013). https://doi.org/10.1007/s11249-013-0203-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-013-0203-1

Keywords

Navigation