Skip to main content

Advertisement

Log in

Scanning strategy in selective laser melting (SLM): a review

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

During the additive manufacturing (AM) process, energy is transferred from the energy beam to the processed material. The high-energy input and uneven temperature distribution result in the high-temperature gradient, large thermal stress, and warping deformation. The scanning strategy, one of the representative AM processing parameters, plays an important role in the microstructures, mechanical properties, and residual stresses of 3D printed parts. It is necessary to review the current state of research about scanning strategy in additive manufacturing, and this paper seeks to address this need. This review mainly focuses on the scanning strategies in selective laser melting process. Various scanning strategies and their effects on mechanical properties, microstructures, and residual stresses of selective laser melted parts are summarized. Finally, some suggestions on the optimization of scanning strategy for better performance are provided based on the above analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data Availability

Not applicable

References

  1. Sercombe TB, Schaffer GB (2003) Rapid manufacturing of aluminum components. Science 301(5637):1225–1227. https://doi.org/10.1126/science.1086989

    Article  Google Scholar 

  2. DebRoy T, Wei HL, Zuback JS, Mukherjee T, Elmer JW, Milewski JO, Beese AM, Wilson-Heid A, De A, Zhang W (2018) Additive manufacturing of metallic components – Process, structure and properties. Prog Mater Sci 92:112–224. https://doi.org/10.1016/j.pmatsci.2017.10.001

    Article  Google Scholar 

  3. Cooke S, Ahmadi K, Willerth S, Herring R (2020) Metal additive manufacturing: technology, metallurgy and modelling. J Manuf Process 57:978–1003. https://doi.org/10.1016/j.jmapro.2020.07.025

    Article  Google Scholar 

  4. Gibson I, Rosen D, Stucker B (2015) Directed energy deposition processes. In: Gibson I, Rosen D, Stucker B (eds) Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing. Springer New York, New York, NY, pp 245–268. https://doi.org/10.1007/978-1-4939-2113-3_10

    Chapter  Google Scholar 

  5. Li C, Liu ZY, Fang XY, Guo YB (2018) On the simulation scalability of predicting residual stress and distortion in selective; laser melting. J Manuf Sci Eng Trans ASME 140(4). https://doi.org/10.1115/1.4038893

  6. Kruth JP, Levy G, Klocke F, Childs THC (2007) Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann 56(2):730–759. https://doi.org/10.1016/j.cirp.2007.10.004

    Article  Google Scholar 

  7. He K, Zhao X (2018) 3D thermal finite element analysis of the SLM 316L parts with microstructural correlations. Complexity 2018:1–13. https://doi.org/10.1155/2018/6910187

    Article  Google Scholar 

  8. Kruth JP, Froyen L, Van Vaerenbergh J, Mercelis P, Rombouts M, Lauwers B (2004) Selective laser melting of iron-based powder. J Mater Process Technol 149(1-3):616–622. https://doi.org/10.1016/j.jmatprotec.2003.11.051

    Article  Google Scholar 

  9. Xiong W, Hao L, Li Y, Tang D, Cui Q, Feng Z, Yan C (2019) Effect of selective laser melting parameters on morphology, microstructure, densification and mechanical properties of supersaturated silver alloy. Mater Des 170. https://doi.org/10.1016/j.matdes.2019.107697

  10. Lu Y, Wu S, Gan Y, Huang T, Yang C, Junjie L, Lin J (2015) Study on the microstructure, mechanical property and residual stress of SLM Inconel-718 alloy manufactured by differing island scanning strategy. Opt Laser Technol 75:197–206. https://doi.org/10.1016/j.optlastec.2015.07.009

    Article  Google Scholar 

  11. Trevisan F, Calignano F, Lorusso M, Pakkanen J, Aversa A, Ambrosio EP, Lombardi M, Fino P, Manfredi D (2017) On the selective laser melting (SLM) of the AlSi10Mg alloy: process, microstructure, and mechanical properties. Mater 10(1). https://doi.org/10.3390/ma10010076

  12. Tolochko Nikolay K, Mozzharov Sergei E, Yadroitsev Igor A, Laoui T, Froyen L, Titov Victor I, Ignatiev Michail B (2004) Balling processes during selective laser treatment of powders. Rapid Prototyp J 10(2):78–87. https://doi.org/10.1108/13552540410526953

    Article  Google Scholar 

  13. Jhabvala J, Boillat E, Antignac T, Glardon R (2010) On the effect of scanning strategies in the selective laser melting process. Virtual Phys Prototyp 5(2):99–109. https://doi.org/10.1080/17452751003688368

    Article  Google Scholar 

  14. Thijs L, Verhaeghe F, Craeghs T, Humbeeck JV, Kruth JP (2010) A study of the microstructural evolution during selective laser melting of Ti-6Al-4V. Acta Mater 58(9):3303–3312. https://doi.org/10.1016/j.actamat.2010.02.004

    Article  Google Scholar 

  15. Ali H, Ghadbeigi H, Mumtaz K (2018) Effect of scanning strategies on residual stress and mechanical properties of Selective Laser Melted Ti6Al4V. Mater Sci Eng A 712:175–187. https://doi.org/10.1016/j.msea.2017.11.103

    Article  Google Scholar 

  16. Segura-Cardenas E, Ramirez-Cedillo EG, Sandoval-Robles JA, Ruiz-Huerta L, Caballero-Ruiz A, Siller HR (2017) Permeability study of austenitic stainless steel surfaces produced by selective laser melting. Metals 7(12). https://doi.org/10.3390/met7120521

  17. Zhang W, Tong M, Harrison NM (2020) Scanning strategies effect on temperature, residual stress and deformation by multi-laser beam powder bed fusion manufacturing. Addit Manuf 36:101507. https://doi.org/10.1016/j.addma.2020.101507

    Article  Google Scholar 

  18. Thijs L, Kempen K, Kruth JP, Van Humbeeck J (2013) Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Mater 61(5):1809–1819. https://doi.org/10.1016/j.actamat.2012.11.052

    Article  Google Scholar 

  19. AlMangour B, Grzesiak D, Yang JM (2017) Scanning strategies for texture and anisotropy tailoring during selective laser melting of TiC/316L stainless steel nanocomposites. J Alloys Compd 728:424–435. https://doi.org/10.1016/j.jallcom.2017.08.022

    Article  Google Scholar 

  20. Larimian T, Kannan M, Grzesiak D, AlMangour B, Borkar T (2020) Effect of energy density and scanning strategy on densification, microstructure and mechanical properties of 316L stainless steel processed via selective laser melting. Mater Sci Eng A 770. https://doi.org/10.1016/j.msea.2019.138455

  21. Wan HY, Zhou ZJ, Li CP, Chen GF, Zhang GP (2018) Effect of scanning strategy on grain structure and crystallographic texture of Inconel 718 processed by selective laser melting. J Mater Sci Technol 34(10):1799–1804. https://doi.org/10.1016/j.jmst.2018.02.002

    Article  Google Scholar 

  22. Amirjan M, Sakiani H (2019) Effect of scanning strategy and speed on the microstructure and mechanical properties of selective laser melted IN718 nickel-based superalloy. Int J Adv Manuf Technol 103(5-8):1769–1780. https://doi.org/10.1007/s00170-019-03545-0

    Article  Google Scholar 

  23. Liu CY, Tong JD, Jiang MG, Chen ZW, Xu G, Liao HB, Wang P, Wang XY, Xu M, Lao CS (2019) Effect of scanning strategy on microstructure and mechanical properties of selective laser melted reduced activation ferritic/martensitic steel. Mater Sci Eng A 766. https://doi.org/10.1016/j.msea.2019.138364

  24. Guo M, Ye Y, Jiang X, Wang L (2019) Microstructure, Mechanical Properties and Residual Stress of Selective Laser Melted AlSi10Mg. J Mater Eng Perform 28(11):6753–6760. https://doi.org/10.1007/s11665-019-04423-2

    Article  Google Scholar 

  25. Zaeh MF, Branner G (2010) Investigations on residual stresses and deformations in selective laser melting. Prod Eng 4(1):35–45. https://doi.org/10.1007/s11740-009-0192-y

    Article  Google Scholar 

  26. Ramos D, Belblidia F, Sienz J (2019) New scanning strategy to reduce warpage in additive manufacturing. Addit Manuf 28:554–564. https://doi.org/10.1016/j.addma.2019.05.016

    Article  Google Scholar 

  27. Zou S, Xiao H, Ye F, Li Z, Tang W, Zhu F, Chen C, Zhu C (2020) Numerical analysis of the effect of the scan strategy on the residual stress in the multi-laser selective laser melting. Results Phys 16:103005. https://doi.org/10.1016/j.rinp.2020.103005

    Article  Google Scholar 

  28. Wang L, Jiang X, Zhu Y, Zhu X, Sun J, Yan B (2018) An approach to predict the residual stress and distortion during the selective laser melting of AlSi10Mg parts. Int J Adv Manuf Technol 97(9-12):3535–3546. https://doi.org/10.1007/s00170-018-2207-3

    Article  Google Scholar 

  29. Nandwana P, Lee Y (2020) Influence of scan strategy on porosity and microstructure of Ti-6Al-4V fabricated by electron beam powder bed fusion. Mater Today Commun 24. https://doi.org/10.1016/j.mtcomm.2020.100962

  30. Onal E, Medvedev AE, Leeflang MA, Molotnikov A, Zadpoor AA (2019) Novel microstructural features of selective laser melted lattice struts fabricated with single point exposure scanning. Addit Manuf 29:100785. https://doi.org/10.1016/j.addma.2019.100785

    Article  Google Scholar 

  31. Salman OO, Brenne F, Niendorf T, Eckert J, Prashanth KG, He T, Scudino S (2019) Impact of the scanning strategy on the mechanical behavior of 316L steel synthesized by selective laser melting. J Manuf Process 45:255–261. https://doi.org/10.1016/j.jmapro.2019.07.010

    Article  Google Scholar 

  32. Biffi CA, Fiocchi J, Ferrario E, Fornaci A, Riccio M, Romeo M, Tuissi A (2020) Effects of the scanning strategy on the microstructure and mechanical properties of a TiAl6V4 alloy produced by electron beam additive manufacturing. Int J Adv Manuf Technol 107:4913–4924. https://doi.org/10.1007/s00170-020-05358-y

    Article  Google Scholar 

  33. Aboulkhair NT, Everitt NM, Ashcroft I, Tuck C (2014) Reducing porosity in AlSi10Mg parts processed by selective laser melting. Addit Manuf 1:77–86. https://doi.org/10.1016/j.addma.2014.08.001

    Article  Google Scholar 

  34. Shipley H, McDonnell D, Culleton M, Coull R, Lupoi R, O’Donnell G, Trimble D (2018) Optimisation of process parameters to address fundamental challenges during selective laser melting of Ti-6Al-4V: A review. Int J Mach Tools Manuf 128:1–20. https://doi.org/10.1016/j.ijmachtools.2018.01.003

    Article  Google Scholar 

  35. Zhang C, Zhu H, Hu Z, Zhang L, Zeng X (2019) A comparative study on single-laser and multi-laser selective laser melting AlSi10Mg: defects, microstructure and mechanical properties. Mater Sci Eng A 746:416–423. https://doi.org/10.1016/j.msea.2019.01.024

    Article  Google Scholar 

  36. Stamp R, Fox P, O’Neill W, Jones E, Sutcliffe C (2009) The development of a scanning strategy for the manufacture of porous biomaterials by selective laser melting. J Mater Sci Mater Med 20(9):1839–1848. https://doi.org/10.1007/s10856-009-3763-8

    Article  Google Scholar 

  37. Huang S, Yeong WY (2018) Laser re-scanning strategy in selective laser melting for part quality enhancement: A review. In: Proceedings of the International Conference on Progress in Additive Manufacturing. pp 413–419. https://doi.org/10.25341/D4GP4J

  38. Sateesh NH, Kumar GCM, Prasad K, C.K S, Vinod AR (2014) Microstructure and mechanical characterization of laser sintered Inconel-625 superalloy. Procedia Mater Sci 5:772-779. doi:https://doi.org/10.1016/j.mspro.2014.07.327

  39. Carter LN, Martin C, Withers PJ, Attallah MM (2014) The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy. J Alloys Compd 615:338–347. https://doi.org/10.1016/j.jallcom.2014.06.172

    Article  Google Scholar 

  40. Żrodowski Ł, Wysocki B, Wróblewski R, Krawczyńska A, Adamczyk-Cieślak B, Zdunek J, Błyskun P, Ferenc J, Leonowicz M, Święszkowski W (2019) New approach to amorphization of alloys with low glass forming ability via selective laser melting. J Alloys Compd 771:769–776. https://doi.org/10.1016/j.jallcom.2018.08.075

    Article  Google Scholar 

  41. Lee YS, Kirka MM, Ferguson J, Paquit VC (2020) Correlations of cracking with scan strategy and build geometry in electron beam powder bed additive manufacturing. Addit Manuf 32. https://doi.org/10.1016/j.addma.2019.101031

  42. Yasa E, Kruth JP (2011) Microstructural investigation of selective laser melting 316L stainless steel parts exposed to laser re-melting. Procedia Eng 19:389–395. https://doi.org/10.1016/j.proeng.2011.11.130

    Article  Google Scholar 

  43. Yasa E, Deckers J, Kruth J-P (2011) The investigation of the influence of laser re-melting on density, surface quality and microstructure of selective laser melting parts. Rapid Prototyp J 17(5):312–327. https://doi.org/10.1108/13552541111156450

    Article  Google Scholar 

  44. Xie JW, Fox P, O’Neill W, Sutcliffe CJ (2005) Effect of direct laser re-melting processing parameters and scanning strategies on the densification of tool steels. J Mater Process Technol 170(3):516–523. https://doi.org/10.1016/j.jmatprotec.2005.05.055

    Article  Google Scholar 

  45. Siddique S, Imran M, Rauer M, Kaloudis M, Wycisk E, Emmelmann C, Walther F (2015) Computed tomography for characterization of fatigue performance of selective laser melted parts. Mater Des 83:661–669. https://doi.org/10.1016/j.matdes.2015.06.063

    Article  Google Scholar 

  46. Yadroitsev I, Smurov I (2010) Selective laser melting technology: from the single laser melted track stability to 3D parts of complex shape. Phys Procedia 5:551–560. https://doi.org/10.1016/j.phpro.2010.08.083

    Article  Google Scholar 

  47. Gustmann T, Neves A, Kühn U, Gargarella P, Kiminami CS, Bolfarini C, Eckert J, Pauly S (2016) Influence of processing parameters on the fabrication of a Cu-Al-Ni-Mn shape-memory alloy by selective laser melting. Addit Manuf 11:23–31. https://doi.org/10.1016/j.addma.2016.04.003

    Article  Google Scholar 

  48. Jiang X, Ye T, Zhu Y (2020) Effect of process parameters on residual stress in selective laser melting of AlSi10Mg. Mater Sci Technol 36(3):342–352. https://doi.org/10.1080/02670836.2019.1705560

    Article  Google Scholar 

  49. Guan J, Jiang Y, Zhang X, Chong X (2020) Microstructural evolution and EBSD analysis of AlSi10Mg alloy fabricated by selective laser remelting. Mater Charact 161. https://doi.org/10.1016/j.matchar.2019.110079

  50. Yin S, Jenkins R, Yan X, Lupoi R (2018) Microstructure and mechanical anisotropy of additively manufactured cold spray copper deposits. Mater Sci Eng A 734:67–76. https://doi.org/10.1016/j.msea.2018.07.096

    Article  Google Scholar 

  51. Tinkloh S, Wu T, Tröster T, Niendorf T (2020) A micromechanical-based finite element simulation of process-induced residual stresses in metal-CFRP-hybrid structures. Compos Struct 238:111926. https://doi.org/10.1016/j.compstruct.2020.111926

    Article  Google Scholar 

  52. Singh JP, Verma S (2017) 3 - Raw materials for terry fabrics. In: Singh JP, Verma S (eds) Woven Terry Fabrics. Woodhead Publishing, pp 19–28. https://doi.org/10.1016/B978-0-08-100686-3.00003-7

  53. Pei Y, Huang T, Chen F, Pang B, Guo J, Xiang N, Song Z, Zhang Y (2020) Microstructure and fracture mechanism of Ti/Al layered composite fabricated by explosive welding. Vacuum 181:109596. https://doi.org/10.1016/j.vacuum.2020.109596

    Article  Google Scholar 

  54. Köhnen P, Létang M, Voshage M, Schleifenbaum JH, Haase C (2019) Understanding the process-microstructure correlations for tailoring the mechanical properties of L-PBF produced austenitic advanced high strength steel. Addit Manuf 30. https://doi.org/10.1016/j.addma.2019.100914

  55. Arısoy YM, Criales LE, Özel T, Lane B, Moylan S, Donmez A (2017) Influence of scan strategy and process parameters on microstructure and its optimization in additively manufactured nickel alloy 625 via laser powder bed fusion. Int J Adv Manuf Technol 90(5-8):1393–1417. https://doi.org/10.1007/s00170-016-9429-z

    Article  Google Scholar 

  56. Liu X, Zhao C, Zhou X, Shen Z, Liu W (2019) Microstructure of selective laser melted AlSi10Mg alloy. Mater Des 168:107677. https://doi.org/10.1016/j.matdes.2019.107677

    Article  Google Scholar 

  57. Yan F, Xiong W, Faierson EJ (2017) Grain structure control of additively manufactured metallic materials. Mater 10(11). https://doi.org/10.3390/ma10111260

  58. Manvatkar V, De A, DebRoy T (2014) Heat transfer and material flow during laser assisted multi-layer additive manufacturing. J Appl Phys 116(12):124905. https://doi.org/10.1063/1.4896751

    Article  Google Scholar 

  59. Geiger F, Kunze K, Etter T (2016) Tailoring the texture of IN738LC processed by selective laser melting (SLM) by specific scanning strategies. Mater Sci Eng A 661:240–246. https://doi.org/10.1016/j.msea.2016.03.036

    Article  Google Scholar 

  60. Papula S, Song M, Pateras A, Chen XB, Brandt M, Easton M, Yagodzinskyy Y, Virkkunen I, Hänninen H (2019) Selective laser melting of duplex stainless steel 2205: effect of post-processing heat treatment on microstructure, mechanical properties, and corrosion resistance. Mater 12(15). https://doi.org/10.3390/ma12152468

  61. Tian Y, Tomus D, Rometsch P, Wu X (2017) Influences of processing parameters on surface roughness of Hastelloy X produced by selective laser melting. Addit Manuf 13:103–112. https://doi.org/10.1016/j.addma.2016.10.010

    Article  Google Scholar 

  62. Bhardwaj T, Shukla M (2018) Effect of laser scanning strategies on texture, physical and mechanical properties of laser sintered maraging steel. Mater Sci Eng A 734:102–109. https://doi.org/10.1016/j.msea.2018.07.089

    Article  Google Scholar 

  63. Demir AG, Previtali B (2017) Investigation of remelting and preheating in SLM of 18Ni300 maraging steel as corrective and preventive measures for porosity reduction. Int J Adv Manuf Technol 93(5):2697–2709. https://doi.org/10.1007/s00170-017-0697-z

    Article  Google Scholar 

  64. Edwards P, O'Conner A, Ramulu M (2013) Electron beam additive manufacturing of titanium components: properties and performance. J Manuf Sci Eng 135(6). https://doi.org/10.1115/1.4025773

  65. Cunningham R, Narra SP, Ozturk T, Beuth J, Rollett AD (2016) Evaluating the effect of processing parameters on porosity in electron beam melted Ti-6Al-4V via synchrotron X-ray microtomography. JOM 68(3):765–771. https://doi.org/10.1007/s11837-015-1802-0

    Article  Google Scholar 

  66. Raghavan N, Dehoff R, Pannala S, Simunovic S, Kirka M, Turner J, Carlson N, Babu SS (2016) Numerical modeling of heat-transfer and the influence of process parameters on tailoring the grain morphology of IN718 in electron beam additive manufacturing. Acta Mater 112:303–314. https://doi.org/10.1016/j.actamat.2016.03.063

    Article  Google Scholar 

  67. Kudzal A, McWilliams B, Hofmeister C, Kellogg F, Yu J, Taggart-Scarff J, Liang J (2017) Effect of scan pattern on the microstructure and mechanical properties of powder bed fusion additive manufactured 17-4 stainless steel. Mater Des 133:205–215. https://doi.org/10.1016/j.matdes.2017.07.047

    Article  Google Scholar 

  68. Özel T, Altay A, Donmez A, Leach R (2018) Surface topography investigations on nickel alloy 625 fabricated via laser powder bed fusion. Int J Adv Manuf Technol 94(9-12):4451–4458. https://doi.org/10.1007/s00170-017-1187-z

    Article  Google Scholar 

  69. Gu D, Shen Y (2009) Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods. Mater Des 30(8):2903–2910. https://doi.org/10.1016/j.matdes.2009.01.013

    Article  Google Scholar 

  70. Zhang B, Liao H, Coddet C (2012) Effects of processing parameters on properties of selective laser melting Mg–9%Al powder mixture. Mater Des 34:753–758. https://doi.org/10.1016/j.matdes.2011.06.061

    Article  Google Scholar 

  71. Yi JH, Kang JW, Wang TJ, Wang X, Hu YY, Feng T, Feng YL, Wu PY (2019) Effect of laser energy density on the microstructure, mechanical properties, and deformation of Inconel 718 samples fabricated by selective laser melting. J Alloys Compd 786:481–488. https://doi.org/10.1016/j.jallcom.2019.01.377

    Article  Google Scholar 

  72. Kasperovich G, Haubrich J, Gussone J, Requena G (2016) Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting. Mater Des 105:160–170. https://doi.org/10.1016/j.matdes.2016.05.070

    Article  Google Scholar 

  73. Wei K, Yang Q, Ling B, Yang X, Xie H, Qu Z, Fang D (2020) Mechanical properties of Invar 36 alloy additively manufactured by selective laser melting. Mater Sci Eng A 772. https://doi.org/10.1016/j.msea.2019.138799

  74. Ghouse S, Babu S, Van Arkel RJ, Nai K, Hooper PA, Jeffers JRT (2017) The influence of laser parameters and scanning strategies on the mechanical properties of a stochastic porous material. Mater Des 131:498–508. https://doi.org/10.1016/j.matdes.2017.06.041

    Article  Google Scholar 

  75. Nagpal P, Baker I (1990) Effect of cooling rate on hardness of FeAl and NiAl. Metall Trans A 21(8):2281–2282. https://doi.org/10.1007/BF02647891

    Article  Google Scholar 

  76. Murr LE, Amato KN, Li SJ, Tian YX, Cheng XY, Gaytan SM, Martinez E, Shindo PW, Medina F, Wicker RB (2011) Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting. J Mech Behav Biomed Mater 4(7):1396–1411. https://doi.org/10.1016/j.jmbbm.2011.05.010

    Article  Google Scholar 

  77. Li SJ, Xu QS, Wang Z, Hou WT, Hao YL, Yang R, Murr LE (2014) Influence of cell shape on mechanical properties of Ti–6Al–4V meshes fabricated by electron beam melting method. Acta Biomater 10(10):4537–4547. https://doi.org/10.1016/j.actbio.2014.06.010

    Article  Google Scholar 

  78. Koutny D, Palousek D, Pantelejev L, Hoeller C, Pichler R, Tesicky L, Kaiser J (2018) Influence of scanning strategies on processing of aluminum alloy EN AW 2618 using selective laser melting. Mater 11(2). https://doi.org/10.3390/ma11020298

  79. Li J, Deng D, Hou X, Wang X, Ma G, Wu D, Zhang G (2016) Microstructure and performance optimisation of stainless steel formed by laser additive manufacturing. Mater Sci Technol 32(12):1223–1230. https://doi.org/10.1080/02670836.2015.1114774

    Article  Google Scholar 

  80. Mooney B, Kourousis KI, Raghavendra R, Agius D (2019) Process phenomena influencing the tensile and anisotropic characteristics of additively manufactured maraging steel. Mater Sci Eng A 745:115–125. https://doi.org/10.1016/j.msea.2018.12.070

    Article  Google Scholar 

  81. Boi Q, Fei H, Shi YS, Wei QS (2010) RETRACTED ARTICLE: Comparison of two scan strategies applied to the selective laser melting. In: ICCASM 2010 - 2010 International Conference on Computer Application and System Modeling, Proceedings. IEEE Computer Society, pp V5685–V5689. https://doi.org/10.1109/ICCASM.2010.5619227

  82. Qian B, Shi YS, Wei QS, Wang HB (2012) The helix scan strategy applied to the selective laser melting. Int J Adv Manuf Technol 63(5-8):631–640. https://doi.org/10.1007/s00170-012-3922-9

    Article  Google Scholar 

  83. Wang L, Jiang X, Zhu Y, Ding Z, Zhu X, Sun J, Yan B (2018) Investigation of performance and residual stress generation of AlSi10Mg processed by selective laser melting. Adv Mater Sci Eng 2018:1–12. https://doi.org/10.1155/2018/7814039

    Article  Google Scholar 

  84. Dimitrov D, Becker TH, Yadroitsev I, Booysen G (2016) On the impact of different system strategies on the material performance of selective laser melting- manufactured TI6AL4V components. S Afr J Ind Eng 27(3SpecialIssue):184–191. https://doi.org/10.7166/27-3-1664

    Article  Google Scholar 

  85. Promoppatum P, Yao S-C (2020) Influence of scanning length and energy input on residual stress reduction in metal additive manufacturing: Numerical and experimental studies. J Manuf Process 49:247–259. https://doi.org/10.1016/j.jmapro.2019.11.020

    Article  Google Scholar 

  86. Chen XH, Lu J, Lu L, Lu K (2005) Tensile properties of a nanocrystalline 316L austenitic stainless steel. Scr Mater 52(10):1039–1044. https://doi.org/10.1016/j.scriptamat.2005.01.023

    Article  Google Scholar 

  87. Beevers E, Brandão AD, Gumpinger J, Gschweitl M, Seyfert C, Hofbauer P, Rohr T, Ghidini T (2018) Fatigue properties and material characteristics of additively manufactured AlSi10Mg – effect of the contour parameter on the microstructure, density, residual stress, roughness and mechanical properties. Int J Fatigue 117:148–162. https://doi.org/10.1016/j.ijfatigue.2018.08.023

    Article  Google Scholar 

  88. Onal E, Medvedev AE, Leeflang MA, Molotnikov A, Zadpoor AA (2019) Novel microstructural features of selective laser melted lattice struts fabricated with single point exposure scanning. Addit Manuf 29. https://doi.org/10.1016/j.addma.2019.100785

  89. Rashid R, Masood SH, Ruan D, Palanisamy S, Rahman Rashid RA, Brandt M (2017) Effect of scan strategy on density and metallurgical properties of 17-4PH parts printed by selective laser melting (SLM). J Mater Process Technol 249:502–511. https://doi.org/10.1016/j.jmatprotec.2017.06.023

    Article  Google Scholar 

  90. Píška M, Trubačová P, Horníková J, Šandera P, Klas B (2017) A study of selective laser melting technology on the ultra-high strength tool steel use—quality, mechanical properties and fatigue. Lecture Notes Mech Eng. https://doi.org/10.1007/978-3-319-41468-3_6

  91. Nadammal N, Cabeza S, Mishurova T, Thiede T, Kromm A, Seyfert C, Farahbod L, Haberland C, Schneider JA, Portella PD, Bruno G (2017) Effect of hatch length on the development of microstructure, texture and residual stresses in selective laser melted superalloy Inconel 718. Mater Des 134:139–150. https://doi.org/10.1016/j.matdes.2017.08.049

    Article  Google Scholar 

  92. Gao H, Sheikholeslami G, Dearden G, Edwardson SP (2017) Reverse analysis of scan strategies for controlled 3D laser forming of sheet metal. In: Procedia Engineering, pp 369–374. https://doi.org/10.1016/j.proeng.2017.04.054

  93. Li C, Fu CH, Guo YB, Fang FZ (2015) Fast prediction and validation of part distortion in selective laser melting. Procedia Manuf 1:355–365. https://doi.org/10.1016/j.promfg.2015.09.042

    Article  Google Scholar 

  94. Yan X, Pang J, Jing Y (2019) Ultrasonic measurement of stress in SLM 316L stainless steel forming parts manufactured using different scanning strategies. Mater 12(7). https://doi.org/10.3390/ma12172719

  95. Liu Y, Yang Y, Wang D (2016) A study on the residual stress during selective laser melting (SLM) of metallic powder. Int J Adv Manuf Technol 87(1):647–656. https://doi.org/10.1007/s00170-016-8466-y

    Article  Google Scholar 

  96. Catchpole-Smith S, Aboulkhair N, Parry L, Tuck C, Ashcroft IA, Clare A (2017) Fractal scan strategies for selective laser melting of ‘unweldable’ nickel superalloys. Addit Manuf 15:113–122. https://doi.org/10.1016/j.addma.2017.02.002

    Article  Google Scholar 

  97. Parry L, Ashcroft IA, Wildman RD (2016) Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation. Addit Manuf 12:1–15. https://doi.org/10.1016/j.addma.2016.05.014

    Article  Google Scholar 

  98. Yu J, Lin X, Ma L, Wang J, Fu X, Chen J, Huang W (2011) Influence of laser deposition patterns on part distortion, interior quality and mechanical properties by laser solid forming (LSF). Mater Sci Eng A 528(3):1094–1104. https://doi.org/10.1016/j.msea.2010.09.078

    Article  Google Scholar 

  99. Masoomi M, Thompson SM, Shamsaei N (2017) Quality part production via multi-laser additive manufacturing. Manuf Lett 13:15–20. https://doi.org/10.1016/j.mfglet.2017.05.003

    Article  Google Scholar 

  100. Sharma R, Kumar A (2019) Track-scale simulations of selective laser melting to investigate development and mitigation of thermal stresses. Lasermed Imunopatol Manuf Mater P V 6(4):464–492. https://doi.org/10.1007/s40516-019-00103-0

    Article  Google Scholar 

  101. Parry LA, Ashcroft IA, Wildman RD (2019) Geometrical effects on residual stress in selective laser melting. Addit Manuf 25:166–175. https://doi.org/10.1016/j.addma.2018.09.026

    Article  Google Scholar 

  102. Song J, Wu W, Zhang L, He B, Lu L, Ni X, Long Q, Zhu G (2018) Role of scanning strategy on residual stress distribution in Ti-6Al-4V alloy prepared by selective laser melting. Optik 170:342–352. https://doi.org/10.1016/j.ijleo.2018.05.128

    Article  Google Scholar 

  103. Shiomi M, Osakada K, Nakamura K, Yamashita T, Abe F (2004) Residual stress within metallic model made by selective laser melting process. CIRP Ann 53(1):195–198. https://doi.org/10.1016/S0007-8506(07)60677-5

    Article  Google Scholar 

  104. Ferrar B, Mullen L, Jones E, Stamp R, Sutcliffe CJ (2012) Gas flow effects on selective laser melting (SLM) manufacturing performance. J Mater Process Technol 212(2):355–364. https://doi.org/10.1016/j.jmatprotec.2011.09.020

    Article  Google Scholar 

  105. Ladewig A, Schlick G, Fisser M, Schulze V, Glatzel U (2016) Influence of the shielding gas flow on the removal of process by-products in the selective laser melting process. Addit Manuf 10:1–9. https://doi.org/10.1016/j.addma.2016.01.004

    Article  Google Scholar 

  106. Masoomi M, Pegues JW, Thompson SM, Shamsaei N (2018) A numerical and experimental investigation of convective heat transfer during laser-powder bed fusion. Addit Manuf 22:729–745. https://doi.org/10.1016/j.addma.2018.06.021

    Article  Google Scholar 

  107. Ali H, Ma L, Ghadbeigi H, Mumtaz K (2017) In-situ residual stress reduction, martensitic decomposition and mechanical properties enhancement through high temperature powder bed pre-heating of selective laser melted Ti6Al4V. Mater Sci Eng A 695:211–220. https://doi.org/10.1016/j.msea.2017.04.033

    Article  Google Scholar 

  108. Brückner F, Lepski D, Beyer E (2007) Modeling the influence of process parameters and additional heat sources on residual stresses in laser cladding. J Therm Spray Technol 16(3):355–373. https://doi.org/10.1007/s11666-007-9026-7

    Article  Google Scholar 

  109. Vasinonta A, Beuth JL, Griffith M (2006) Process maps for predicting residual stress and melt pool size in the laser-based fabrication of thin-walled structures. J Manuf Sci Eng 129(1):101–109. https://doi.org/10.1115/1.2335852

    Article  Google Scholar 

  110. Vora P, Mumtaz K, Todd I, Hopkinson N (2015) AlSi12 in-situ alloy formation and residual stress reduction using anchorless selective laser melting. Addit Manuf 7:12–19. https://doi.org/10.1016/j.addma.2015.06.003

    Article  Google Scholar 

  111. Xu W, Brandt M, Sun S, Elambasseril J, Liu Q, Latham K, Xia K, Qian M (2015) Additive manufacturing of strong and ductile Ti–6Al–4V by selective laser melting via in situ martensite decomposition. Acta Mater 85:74–84. https://doi.org/10.1016/j.actamat.2014.11.028

    Article  Google Scholar 

  112. Simchi A, Pohl H (2004) Direct laser sintering of iron–graphite powder mixture. Mater Sci Eng A 383(2):191–200. https://doi.org/10.1016/j.msea.2004.05.070

    Article  Google Scholar 

  113. Gu D, Shen Y (2008) Direct laser sintered WC-10Co/Cu nanocomposites. Appl Surf Sci 254(13):3971–3978. https://doi.org/10.1016/j.apsusc.2007.12.028

    Article  Google Scholar 

  114. Sun J, Yang Y, Wang D (2013) Parametric optimization of selective laser melting for forming Ti6Al4V samples by Taguchi method. Opt Laser Technol 49:118–124. https://doi.org/10.1016/j.optlastec.2012.12.002

    Article  Google Scholar 

  115. Zhang J, Zhang Y, Lee WH, Wu L, Choi H-H, Jung Y-G (2018) A multi-scale multi-physics modeling framework of laser powder bed fusion additive manufacturing process. Metal Powder Rep 73(3):151–157. https://doi.org/10.1016/j.mprp.2018.01.003

    Article  Google Scholar 

  116. Liang X, Liu Z, Wang B, Song Q, Cai Y, Wan Y (2021) Prediction of residual stress with multi-physics model for orthogonal cutting Ti-6Al-4V under various tool wear morphologies. J Mater Process Technol 288:116908. https://doi.org/10.1016/j.jmatprotec.2020.116908

    Article  Google Scholar 

  117. Miyagi M, Wang H, Yoshida R, Kawahito Y, Kawakami H, Shoubu T (2018) Effect of alloy element on weld pool dynamics in laser welding of aluminum alloys. Sci Rep 8(1):12944. https://doi.org/10.1038/s41598-018-31350-4

    Article  Google Scholar 

  118. Xie R, Chen G, Zhao Y, Zhang S, Yan W, Lin X, Shi Q (2019) In-situ observation and numerical simulation on the transient strain and distortion prediction during additive manufacturing. J Manuf Process 38:494–501. https://doi.org/10.1016/j.jmapro.2019.01.049

    Article  Google Scholar 

Download references

Funding

This work is financially supported by the National Key Research and Development Program of China (2016YFB1100103), National Natural Science Foundation of China (52075327 and 52004160), Science and Technology Commission of Shanghai Municipality (“Sailing Program”, 20YF1419200), Natural Science Foundation of Shanghai (20ZR1427500), and SJTU Global Strategic Partnership Fund (2020 SJTU-KTH).

Author information

Authors and Affiliations

Authors

Contributions

Hongze Wang and Yi Wu conceived the idea of the review. Haolin Jia and Hua Sun wrote the initial draft of the paper. All authors contributed to refining the ideas, carrying out additional analyses and finalizing this paper.

Corresponding authors

Correspondence to Hongze Wang or Yi Wu.

Ethics declarations

Ethical approval and consent to participate

Not applicable

Consent for publication

Written informed consent for publication was obtained from all participants.

Competing interests

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, H., Sun, H., Wang, H. et al. Scanning strategy in selective laser melting (SLM): a review. Int J Adv Manuf Technol 113, 2413–2435 (2021). https://doi.org/10.1007/s00170-021-06810-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-06810-3

Keywords

Navigation