Skip to main content
Log in

Spreading and dewetting in nanoscale lubrication

  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

This article critically reviews the fundamental scientific tools, as well as constructs cohesive schemes for potential applications, relevant to the molecularly-thin liquid film technology. Our focus is to understand the nanoscale dynamic behavior of thin lubricant films, relevant to the emerging field of nanotechnology, especially for achieving durability and reliability in the nanoscale devices. Our goal is to present a unified and hybrid description of perfluoropolyether (PFPE) experiment, mesoscopic interpretation, microscopic simulation tools, and molecular design tools available up to now. The experimentation and theory for the physicochemical properties of ultra-thin PFPE films are used to examine liquid film in the sub-monolayer to multilayer regime. Methods for extracting spreading properties from the scanning microellipsometry (SME) for various PFPE/solid surface pairs and the surface rheological characterization of PFPEs are examined. The interrelationships among SME spreading profiles, rheology, surface energy, and tribology, are given. Mesoscopic theories, including thermodynamics of evaporation and flow, stability analysis, microscale mass transfer, and capillary waves are introduced to describe thin PFPE film dynamics. Estimation of thin film viscosity enhancement from vapor pressure suppression by dispersion force is reviewed. The method for experimental derivation of lubricant spreading profiles from contact angles is summarized. The implications of capillary waves, or thermal fluctuations, at the surface of polymeric lubricant films are also discussed. The lattice-based, simple reactive sphere Monte Carlo (MC) technique for examining the fundamentals of PFPE dynamics is illustrated. An off-lattice based bead–spring MC model is also introduced to capture a detailed internal structure of the PFPE molecules, and the molecular dynamics method is implemented for a full-scale nanostructural analysis of PFPE ultra-thin films. By systematically tuning the endgroup strengths of PFPE, we examined the physicochemical properties for thin liquid films of the various PFPE/solid surface pairings. These tools accurately describe the static and dynamic behavior of ultra-thin liquid films consistent with experimental findings and thus are suitable for examining the fundamental mechanisms of lubrication in nanoscale devices. Application of the next generation head–disk interface design in information storage device is briefly considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • G.F. Teletzke H.T. Davis L.E. Scriven (1987) Chem. Eng. Commun. 55 41

    Google Scholar 

  • C.M. Mate B. Marchon (2000) Phys. Rev. Lett. 85 3902 Occurrence Handle10.1103/PhysRevLett.85.3902

    Article  Google Scholar 

  • M.C. Roco W.S. Bainbridge (Eds) (2003) Converging Technologies for Improving Human Performance Kluwer Academic Publisher Norwell, MA

    Google Scholar 

  • A.M. Cazabat N. Fraysse F. Heslot P. Carles (1990) J. Phys. Chem. 94 7581

    Google Scholar 

  • V.J. Novotny (1990) J. Chem. Phys. 92 3189 Occurrence Handle10.1063/1.457916

    Article  Google Scholar 

  • B.G. Min J.W. Choi H.R. Brown D.Y. Yoon T.M. O’Connor M.S. Jhon (1995) Tribol. Lett. 1 225 Occurrence Handle10.1007/BF00209777

    Article  Google Scholar 

  • T.M. O’Connor M.S. Jhon C.L. Bauer B.G. Min D.Y. Yoon T.E. Karis (1995) Tribol. Lett. 1 219 Occurrence Handle10.1007/BF00209776

    Article  Google Scholar 

  • X. Ma J. Gui L. Smoliar K. Grannen B. Marchon M.S. Jhon C.L. Bauer (1999) J. Chem. Phys 110 IssueID6 3129 Occurrence Handle10.1063/1.477909

    Article  Google Scholar 

  • X. Ma J. Gui L. Smoliar K. Grannen B. Marchon C.L. Bauer M.S. Jhon (1999) Phys. Rev. E 59 IssueID1 722 Occurrence Handle10.1103/PhysRevE.59.722

    Article  Google Scholar 

  • J. Ruhe G. Blackman V.J. Novotny T. Clarke G.B. Street S. Kuan (1994) J. Appl. Polym. Sci. 53 825 Occurrence Handle10.1002/app.1994.070530611

    Article  Google Scholar 

  • C. Kajdas B. Bhushan (1999) J. Info. Storage Proc. Syst. 1 303

    Google Scholar 

  • H. Tani, H. Matsumoto, M. Shyoda, T. Kozaki, T. Nakakawaji and Y. Ogawa, US Patent 2002/0006531 A1 (2002).

  • P.H. Kasai (1999) J. Info. Storage Proc. Syst. 1 23

    Google Scholar 

  • N. Tagawa, T. Tateyama, A. Mori, N. Kobayashi, Y. Fujii and M. Ikegami, Proceedings of the 2003 Magnetic Storage Symposium, Frontiers of Magnetic Hard Disk Drive Tribology and Technology, edited by A.A. Polycarpou, M. Suk and Y-T. Hsia, ASME, New York, NY, TRIB-Vol. 15 (2003) p. 17.

  • K.C. Eapen S.T. Patton J.S. Zabinski (2002) Tribol Lett 12 IssueID1 35 Occurrence Handle10.1023/A:1013971321480

    Article  Google Scholar 

  • C. Gao Y.C. Lee J. Chao M. Russak (1995) IEEE Trans. Magn 31 IssueID6 2982 Occurrence Handle10.1109/20.490244

    Article  Google Scholar 

  • A.A. Darhuber S.M. Troian J.M. Davis S.M. Miller S. Wagner (2000) J. Appl. Phys 88 IssueID9 5119 Occurrence Handle10.1063/1.1317238

    Article  Google Scholar 

  • C. Gao Y.C. Lee J. Chao M. Russak (1996) IEEE Trans. Magn 32 IssueID5 3699 Occurrence Handle10.1109/20.538808

    Article  Google Scholar 

  • R.J. Waltman G.W. Tyndall G.J. Wang H. Deng (2004) Tribol Lett 16 IssueID3 215 Occurrence Handle10.1023/B:TRIL.0000009733.71215.0d

    Article  Google Scholar 

  • T. Gesang R. Hoper W. Possart J. Petermann O.D. Hennemann (1997) Appl. Surf. Sci 115 IssueID1 10 Occurrence Handle10.1016/S0169-4332(96)00853-7

    Article  Google Scholar 

  • T.E. Karis B. Marchon D.A. Hopper R.L. Siemens (2002) J. Fluor. Chem 118 IssueID1--2 81 Occurrence Handle10.1016/S0022-1139(02)00197-5

    Article  Google Scholar 

  • Y. Mitsuya K. Goto Y. Hayashi (2004) Tribol. Lett 16 IssueID1--2 43 Occurrence Handle10.1023/B:TRIL.0000009713.93605.90

    Article  Google Scholar 

  • F.E. Spada D. Basov (2000) Tribol. Lett 8 IssueID2–3 179 Occurrence Handle10.1023/A:1019139319076

    Article  Google Scholar 

  • L. Zhu T. Liew T.C. Chong (2002) Appl. Surf. Sci 189 IssueID1–2 53 Occurrence Handle10.1016/S0169-4332(01)01032-7

    Article  Google Scholar 

  • C.M. Mate B.K. Yen D.C. Miller M.F. Toney M. Scarpulla J.E. Frommer (2000) IEEE Trans. Magn 36 IssueID1 110 Occurrence Handle10.1109/20.824434

    Article  Google Scholar 

  • M.F. Toney C.M. Mate K.A. Leach D. Pocker (2000) J. Colloid Interf. Sci 225 IssueID1 219 Occurrence Handle10.1006/jcis.2000.6752

    Article  Google Scholar 

  • T.E. Karis (2001) Tribol. Lett 10 IssueID3 149 Occurrence Handle10.1023/A:1009066508886

    Article  Google Scholar 

  • M.R. Lorenz V.J. Novotny V.R. Deline (1991) Surf. Sci. 250 112 Occurrence Handle10.1016/0039-6028(91)90714-4

    Article  Google Scholar 

  • Y. Abe M. Shibayama T. Matsuo (2000) Surf. Interface Anal 30 IssueID1 632 Occurrence Handle10.1002/1096-9918(200008)30:1<632::AID-SIA790>3.0.CO;2-I

    Article  Google Scholar 

  • C.S. Korach J. Streator S. Danyluk (2001) Appl. Phys. Lett 79 IssueID5 698 Occurrence Handle10.1063/1.1390323

    Article  Google Scholar 

  • D. Yano C. Korach J. Streator S. Danyluk (1999) J. Tribol–Trans. ASME 121 IssueID4 980

    Google Scholar 

  • C.D. Hahm B. Bhushan (1998) Rev. Sci. Instr 69 IssueID9 3339 Occurrence Handle10.1063/1.1149098

    Article  Google Scholar 

  • V.J. Novotny T.E. Karis (1997) Appl. Phys. Lett 71 IssueID1 52 Occurrence Handle10.1063/1.119466

    Article  Google Scholar 

  • T. Gesang D. Fanter R. Hoper W. Possart O.D. Hennemann (1995) Surf. Interface Anal 23 IssueID12 797

    Google Scholar 

  • C. Ton-That A.G. Shard R.H. Bradley (2000) Langmuir 16 IssueID5 2281 Occurrence Handle10.1021/la990605c

    Article  Google Scholar 

  • V.J. Novotny T.E. Karis R.J. Whitefield (1997) Tribol. Trans 40 IssueID1 69

    Google Scholar 

  • L. Zhu T. Liew (2001) IEEE Trans. Magn 37 IssueID4 1833 Occurrence Handle10.1109/20.950982

    Article  Google Scholar 

  • S.W. Meeks W.E. Weresin H.J. Rosen (1995) J. Tribol.–Trans. ASME 117 IssueID1 112

    Google Scholar 

  • T. Cheng B. Zhao J. Chao S.W. Meeks V. Velidandea (2000) Tribol Lett 9 IssueID3–4 181 Occurrence Handle10.1023/A:1018813022532

    Article  Google Scholar 

  • T. Watanabe D.B. Bogy (2002) IEEE Trans. Magn 38 IssueID5 2138 Occurrence Handle10.1109/TMAG.2002.802691

    Article  Google Scholar 

  • S.K. Deoras S-W. Chun G. Vurens F.E. Talke (2003) Tribol. Int. 36 241 Occurrence Handle10.1016/S0301-679X(02)00193-7

    Article  Google Scholar 

  • Y. Mitsuya H. Zhang S. Ishida (2001) J. Tribol.–Trans. ASME 123 IssueID1 188

    Google Scholar 

  • K. Fukuzawa T. Noda Y. Mitsuya (2003) IEEE Trans. Magn 39 IssueID2 898 Occurrence Handle10.1109/TMAG.2003.808917

    Article  Google Scholar 

  • C.M. Mate (2004) Appl. Phys. Lett 84 IssueID4 532 Occurrence Handle10.1063/1.1644335

    Article  Google Scholar 

  • X. Ma J. Gui K.J. Grannen L.A. Smoliar B. Marchon M.S. Jhon C.L. Bauer (1999) Tribol. Lett 6 IssueID1 9 Occurrence Handle10.1023/A:1019143103204

    Article  Google Scholar 

  • M.S. Mayeed T. Kato (2002) J. Appl. Phys 91 IssueID10 7580 Occurrence Handle10.1063/1.1452692

    Article  Google Scholar 

  • H.D. Zhang Y. Mitsuya M. Yamada (2003) J. Tribol.–Trans. ASME 125 IssueID2 350

    Google Scholar 

  • M.C. Kim S.B. Lee S. Kim (2002) J. Ind. Eng. Chem 8 IssueID1 39

    Google Scholar 

  • R.-H. Wang R.L. White S.W. Meeks B.G. Min A. Kellock A. Homola D. Yoon (1996) IEEE Trans. Magn 32 IssueID5 3777 Occurrence Handle10.1109/20.538833

    Article  Google Scholar 

  • T. Yatsue H. Ishihara H. Matsumoto H. Tani (2000) Tribol. Trans 43 IssueID4 802

    Google Scholar 

  • H. Matsumoto H. Tani T. Nakakawaji (2001) IEEE Trans. Magn 37 IssueID4 3059 Occurrence Handle10.1109/20.947063

    Article  Google Scholar 

  • R.J. Waltman N. Kobayashi K. Shirai A. Khurshudov H. Deng (2004) Tribol. Lett 16 IssueID1–2 151 Occurrence Handle10.1023/B:TRIL.0000009725.94292.16

    Article  Google Scholar 

  • G.H. Vurens C.S. Gudeman L.J. Lin J.S. Foster (1992) Langmuir 8 IssueID4 1165

    Google Scholar 

  • H. Zhang, Y. Mitsuya, N. Fukuoka and K. Fukuzawa, Proceedings of the 2003 Magnetic Storage Symposium, edited by M. Suk, A.A. Polycarpou and Y-T. Hsia, ASME, New York, NY, TRIB-Vol. 15, (2003) p. 77.

  • J.H. Choi M. Kawaguchi T. Kato (2003) Tribol. Lett 15 IssueID4 353 Occurrence Handle10.1023/B:TRIL.0000003060.30727.70

    Article  Google Scholar 

  • G.W. Tyndall T.E. Karis M.S. Jhon (1999) Tribol. Trans 42 IssueID3 463

    Google Scholar 

  • C.M. Mate (1992) J. Appl. Phys. 72 3084 Occurrence Handle10.1063/1.351467

    Article  Google Scholar 

  • Y. Dolak T. Hillen (2003) J. Math. Biol 46 IssueID5 460 Occurrence Handle10.1007/s00285-003-0222-x

    Article  Google Scholar 

  • T.M. O’Connor Y.-R. Back M.S. Jhon B.G. Min D.Y. Yoon T.E. Karis (1996) J. Appl. Phys 79 IssueID8 5788 Occurrence Handle10.1063/1.362189

    Article  Google Scholar 

  • T.E. Karis G.W. Tyndall (1999) J. Non-Newton. Fluid Mech. 82 287 Occurrence Handle10.1016/S0377-0257(98)00167-0

    Article  Google Scholar 

  • D.A. Porter K.E. Easterling (Eds) (1981) Phase Transformations in Metals and Alloys Van Nostrand Reinhold Co. Ltd Workingham, Berkshire, England

    Google Scholar 

  • J.D. Ferry ( 1980) Viscoelastic Properties of Polymers EditionNumber3 John Wiley & Sons New York, NY

    Google Scholar 

  • T.E. Karis B. Marchon V. Flores M. Scarpulla (2001) Tribol Lett 11 IssueID3–4 151 Occurrence Handle10.1023/A:1012553415639

    Article  Google Scholar 

  • M.J. R. Cantow E.M. Jr. Barrall B.A. Wolf H. Geerissen (1987) J. Polym. Sci. Polym. Phys. 25 603 Occurrence Handle10.1002/polb.1987.090250311

    Article  Google Scholar 

  • T.L. Einstein (2002) Surf. Sci. 521 IssueID3 L669 Occurrence Handle10.1016/S0039-6028(02)02332-4

    Article  Google Scholar 

  • L.F. Phillips (2000) Chem. Phys. Lett 320 IssueID5–6 398 Occurrence Handle10.1016/S0009-2614(00)00270-0

    Article  Google Scholar 

  • L.F. Phillips (2003) J. Phys. Chem. B 107 9059 Occurrence Handle10.1021/jp027777u

    Article  Google Scholar 

  • E. Chacon and P. Tarazona, Phys. Rev. Lett. 91(16) (2003) Art. No. 166103.

  • W. Brouwer R.K. Pathria (1967) Phys. Rev 163 IssueID1 200 Occurrence Handle10.1103/PhysRev.163.200

    Article  Google Scholar 

  • A.P. Froba A. Leipertz (2003) Int. J. Thermophys 24 IssueID4 895 Occurrence Handle10.1023/A:1025097311041

    Article  Google Scholar 

  • A.K. Doerr M. Tolan W. Prange J.-P. Schlomka T. Seydel W. Press D. Smilgies B. Struth (1999) Phys. Rev. Lett 83 IssueID17 3470 Occurrence Handle10.1103/PhysRevLett.83.3470

    Article  Google Scholar 

  • M.F. Toney C.M. Mate K.A. Leach (2000) Appl. Phys. Lett 77 IssueID20 3296 Occurrence Handle10.1063/1.1326484

    Article  Google Scholar 

  • T.E. Karis (2000) J. Colloid Interf. Sci. 225 196 Occurrence Handle10.1006/jcis.2000.6745

    Article  Google Scholar 

  • K. Katsove J.D. Weeks (2002) J. Phys. Chem. B 106 IssueID33 8429 Occurrence Handle10.1021/jp025934j

    Article  Google Scholar 

  • J.D. Weeks (2002) Annu. Rev. Phys. Chem. 53 533 Occurrence Handle10.1146/annurev.physchem.53.100201.133929

    Article  Google Scholar 

  • M. Li M.L. Schlossman (2002) Phys. Rev. E 65 IssueID6 061608 Occurrence Handle10.1103/PhysRevE.65.061608

    Article  Google Scholar 

  • A. Braslau P.S. Pershan G. Swislow B.M. Ocko J. Als-Nielsen (1988) Phys. Rev. A 38 2457 Occurrence Handle10.1103/PhysRevA.38.2457

    Article  Google Scholar 

  • T. Seydel A. Madsen M. Tolan G. Grubel W. Press (2001) Phys. Rev. B 63 IssueID7 073409 Occurrence Handle10.1103/PhysRevB.63.073409

    Article  Google Scholar 

  • R. Pit B. Marchon S. Meeks V. Velidandla (2001) Tribol. Lett. 10 133 Occurrence Handle10.1023/A:1009074007241

    Article  Google Scholar 

  • T.E. Karis U.V. Nayak (2004) Tribol. Trans 47 IssueID1 103 Occurrence Handle10.1080/05698190490279010

    Article  Google Scholar 

  • M.J. Smallen H.W. Huang (2003) IEEE Trans. Magn 39 IssueID5 2495 Occurrence Handle10.1109/TMAG.2003.816451

    Article  Google Scholar 

  • R.J. Waltman A. Khurshudov G.W. Tyndall (2002) Tribol. Lett 12 IssueID3 163 Occurrence Handle10.1023/A:1014707207255

    Article  Google Scholar 

  • H.I. Kim C.M. Mate K.A. Hannibal S.S. Perry (1999) Phys. Rev. Lett 82 IssueID17 3496 Occurrence Handle10.1103/PhysRevLett.82.3496

    Article  Google Scholar 

  • R. Xie A. Karim J.F. Douglas C.C. Han R.A. Weiss (1998) Phys. Rev. Lett 81 IssueID6 1251 Occurrence Handle10.1103/PhysRevLett.81.1251

    Article  Google Scholar 

  • T.A. Hill D.L. Carroll R. Czerw C.S. Martin D. Perahia (2003) J. Polym. Sci. Part B–Polym. Phys 41 IssueID2 149 Occurrence Handle10.1002/polb.10362

    Article  Google Scholar 

  • L. Xu F.D. Ogletree M. Salmeron H. Tang J. Gui B. Marchon (2000) J. Chem. Phys 112 IssueID6 2952 Occurrence Handle10.1063/1.480868

    Article  Google Scholar 

  • F. Saulnier E. Raphael P.G. Gennes Particlede (2002) Phys. Rev. E 66 061607 Occurrence Handle10.1103/PhysRevE.66.061607

    Article  Google Scholar 

  • C.M. Mate M.R. Lorenz V.J. Novotny (1989) J. Chem. Phys 90 IssueID12 7550 Occurrence Handle10.1063/1.456188

    Article  Google Scholar 

  • G.W. Bao M. Troemel S.F.Y. Li (1998) Appl. Phys. A–Mat. Sci. Proc. S 66 S1283 Occurrence Handle10.1007/s003390051344

    Article  Google Scholar 

  • G.W. Bao S.F.Y. Li (1998) Langmuir 14 IssueID5 1263 Occurrence Handle10.1021/la9708344

    Article  Google Scholar 

  • H. Tani (1999) IEEE Trans. Magn 35 IssueID5 2397 Occurrence Handle10.1109/20.800837

    Article  Google Scholar 

  • A. Kumagai H. Orikasa N. Takahashi O. Ishiwata (2000) J. Tribol. Trans. ASME 122 IssueID4 776

    Google Scholar 

  • N. Nagai S. Kuroda T. Ozue (2002) J. Magn. Mater. 242 338 Occurrence Handle10.1016/S0304-8853(01)01215-X

    Article  Google Scholar 

  • B. Bhushan J. Qi (2003) Nanotechnology 14 IssueID8 886 Occurrence Handle10.1088/0957-4484/14/8/309

    Article  Google Scholar 

  • W.W. Scott B. Bhushan (2003) Ultramicroscopy 97 IssueID1–4 151 Occurrence Handle10.1016/S0304-3991(03)00040-8

    Article  Google Scholar 

  • C.M. Mate V.J. Novotny (1991) J. Chem. Phys 94 IssueID12 8420 Occurrence Handle10.1063/1.460075

    Article  Google Scholar 

  • A. Kuhle, A.H. Sorensen, J.B. Zandenbergen and J. Bohr, Appl. Phys. A 66 (1998) S329.

    Google Scholar 

  • P.J. James M. Antognozzi J. Tamayo T.J. McMaster J.M. Newton M.J. Miles (2001) Langmuir 17 349 Occurrence Handle10.1021/la000332h

    Article  Google Scholar 

  • S.I. Lee S.W. Howell A. Raman R. Reifenberger (2002) Phys. Rev. B 66 115409 Occurrence Handle10.1103/PhysRevB.66.115409

    Article  Google Scholar 

  • V.J. Novotny I. Hussla J.-M. Turlet M.R. Philpott (1989) J. Chem. Phys 90 IssueID10 5861 Occurrence Handle10.1063/1.456392

    Article  Google Scholar 

  • M.A. Karplus and D. Pocker, J. Vac. Sci. Technol. A–Vac. Surf. Films 18(4) (2000) 2033.

  • M.A. Karplus R.J. Waltman D.J. Pocker (2000) J. Appl. Phys 87 IssueID9 6161 Occurrence Handle10.1063/1.372642

    Article  Google Scholar 

  • R.J. Waltman H. Zhang A. Khurshudov D. Pocker M.A. Karplus B. York Q.F. Xiao H. Zadoori J.U. Thiele G.W. Tyndall (2002) Tribol. Lett 12 IssueID1 51 Occurrence Handle10.1023/A:1013975522389

    Article  Google Scholar 

  • D. Frenkel B. Smit (2002) Understanding Molecular Simulation: From Algorithm to Applications 2nd ed. Academic Press New York, NY

    Google Scholar 

  • A. Pouwer Y. Kawakubo R. Tsuchiyama (2001) IEEE Trans. Magn 37 IssueID4 1869 Occurrence Handle10.1109/20.950993

    Article  Google Scholar 

  • H. Tani and H. Matsumoto, J. Tribol.–Trans. ASME 123(3) (2001) 533.

  • S. Izumisawa M.S. Jhon (2002) J. Chem. Phys 117 IssueID8 3972 Occurrence Handle10.1063/1.1494426

    Article  Google Scholar 

  • M.S. Mayeed T. Kato (2003) IEEE Trans. Magn 39 IssueID2 870 Occurrence Handle10.1109/TMAG.2003.808943

    Article  Google Scholar 

  • M.S. Jhon S. Izumisawa Q. Guo D.M. Phillips Y.T. Hsia (2003) IEEE Trans. Magn 39 IssueID2 754 Occurrence Handle10.1109/TMAG.2003.809009

    Article  Google Scholar 

  • X. Ma C.L. Bauer M.S. Jhon J. Gui B. Marchon (1999) Phys. Rev. E 60 IssueID5 5795 Occurrence Handle10.1103/PhysRevE.60.5795

    Article  Google Scholar 

  • S.J. Vinay D.M. Phillips Y.S. Lee C.M. Schroeder X. Ma M.C. Kim M.S. Jhon (2000) J. Appl. Phys 87 IssueID9 6164 Occurrence Handle10.1063/1.372643

    Article  Google Scholar 

  • Q. Guo S. Izumisawa M.S. Jhon Y.-T. Hsia (2004) IEEE Trans. Magn 40 IssueID4 3177 Occurrence Handle10.1109/TMAG.2004.829838

    Article  Google Scholar 

  • Q. Guo S. Izumisawa D.M. Phillips M.S. Jhon (2003) J. Appl. Phys 93 IssueID10 8707 Occurrence Handle10.1063/1.1540169

    Article  Google Scholar 

  • M.S. Jhon (2004) Adv. Chem. Phys. 129 1 Occurrence Handlefull_text||10.1002/047168077X.ch1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Karis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karis, T.E., Kim, W.T. & Jhon, M.S. Spreading and dewetting in nanoscale lubrication. Tribol Lett 18, 27–41 (2005). https://doi.org/10.1007/s11249-004-1702-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-004-1702-x

Keywords

Navigation