Skip to main content
Log in

A multi-year assessment of the environmental impact of transgenic Eucalyptus trees harboring a bacterial choline oxidase gene on biomass, precinct vegetation and the microbial community

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

A 4-year field trial for the salt tolerant Eucalyptus globulus Labill. harboring the choline oxidase (codA) gene derived from the halobacterium Arthrobacter globiformis was conducted to assess the impact of transgenic versus non-transgenic trees on biomass production, the adjacent soil microbial communities and vegetation by monitoring growth parameters, seasonal changes in soil microbes and the allelopathic activity of leaves. Three independently-derived lines of transgenic E. globulus were compared with three independent non-transgenic lines including two elite clones. No significant differences in biomass production were detected between transgenic lines and non-transgenic controls derived from same seed bulk, while differences were seen compared to two elite clones. Significant differences in the number of soil microbes present were also detected at different sampling times but not between transgenic and non-transgenic lines. The allelopathic activity of leaves from both transgenic and non-transgenic lines also varied significantly with sampling time, but the allelopathic activity of leaves from transgenic lines did not differ significantly from those from non-transgenic lines. These results indicate that, for the observed variables, the impact on the environment of codA-transgenic E. globulus did not differ significantly from that of the non-transformed controls on this field trial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams JM, Piovesan G, Strauss S, Brown S (2002) The case for genetic engineering of native and landscape trees against introduced pests and diseases. Conserv Biol 16:874–879

    Article  Google Scholar 

  • Batista R, Oliveira M (2010) Plant natural variability may affect safety assessment data. Regul Toxicol Pharmacol 58:S8–S12

    Article  CAS  PubMed  Google Scholar 

  • Campbell MM, Brunner AM, Jones HM, Strauss SH (2003) Forestry’s fertile crescent: the application of biotechnology to forest trees. Plant Biotechnol J 1:141–154

    Article  CAS  PubMed  Google Scholar 

  • Caplan A, Herrera-Estrella L, Inze D, Van Haute E, Van Montagu M, Schell J, Zambryski P (1983) Introduction of genetic material into plant cells. Science 222:815–821

    Article  CAS  PubMed  Google Scholar 

  • Chen ZZ, Ho CK, Ahn IS, Chiang VL (2006) Eucalyptus. Methods Mol Biol 344:125–134

    CAS  PubMed  Google Scholar 

  • Chiang CH, Wang JJ, Jan FJ, Yeh SD, Gonsalves D (2001) Comparative reactions of recombinant papaya ringspot viruses with chimeric coat protein (CP) genes and wild-type viruses on CP-transgenic papaya. J Gen Virol 82:2827–2836

    CAS  PubMed  Google Scholar 

  • Cohen SN, Chang AC, Boyer HW, Helling RB (1973) Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci USA 70:3240–3244

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Convention on Biological Diversity (2000a) Cartagena protocol on biosafety (first extraordinary meeting of the conference of the parties to the CDB, 22–23 February 1999 & 24–28 January 2000) (see also http://bch.cbd.int/protocol/)

  • Convention on Biological Diversity (2000b) BS-V/12 Risk assessment and risk management (Articles 15 and 16) (fifth meeting of the conference of the parties serving as the meeting of the parties to the Cartagena protocol on biosafety, 15–26 May 2000) (see also http://bch.cbd.int/protocol/cpb_art15_dec.shtml?decisionID=12325)

  • Convention on Biological Diversity (2012) UNEP/CBD/BS/COP-MOP/6/13/Add.1 guidance on risk assessment of living modified organisms (Revised on 19 July 2012) (see also http://www.cbd.int/doc/meetings/bs/mop-06/official/mop-06-13-add1-en.pdf)

  • EFSA (2010) Guidance on the environmental risk assessment of genetically modified plants. EFSA J 8:1879

    Google Scholar 

  • EFSA (2011) Guidance for risk assessment of food and feed from genetically modified plants. EFSA J 9:2150

    Google Scholar 

  • Eldridge KG, Davidson J, Harwood CE, Wyk G (1993) Eucalypt domestication and breeding. Clarendon Press, London

    Google Scholar 

  • Ewald D, Hu J, Yang M (2006) Transgenic forest trees in China. In: Ewald D (ed) Fladung M. Springer, Germany

    Google Scholar 

  • Fan F, Ghanem M, Gadda G (2004) Cloning, sequence analysis, and purification of choline oxidase from Arthrobacter globiformis: a bacterial enzyme involved in osmotic stress tolerance. Arch Biochem Biophys 421:149–158

    Article  CAS  PubMed  Google Scholar 

  • FAO (2004) Preliminary review of biotechnology in forestry, including genetic modification. Forest Resources Development Service, Working Paper FGR/59E, Forest Resources Division FAO, Rome, Italy

  • FAO/WHO (1996) Biotechnology and food safety. Report of a Joint FAO/WHO Consultation Rome. 30 September–4 October 1996

  • Fillatti JAJ, Sellmer J, McCown B, Haissig B, Comai L (1987) Agrobacterium mediated transformation and regeneration of Populus. Mol Gen Genet 206:192–199

    Article  CAS  Google Scholar 

  • Flachowsky H, Hanke MV, Peil A, Strauss SH, Fladung M (2009) A review on transgenic approaches to accelerate breeding of woody plants. Plant Breeding 128:217–226

    Article  CAS  Google Scholar 

  • Fladung M, Altosaar I, Bartsch D, Baucher M, Boscaleri F, Gallardo F, Haggman H, Hoenicka H, Nielsen K, Paffetti D, Seguin A, Stotzky G, Vettori C (2012) European discussion forum on transgenic tree biosafety. Nat Biotechnol 30:37–38

    Article  CAS  PubMed  Google Scholar 

  • Fujii Y, Parvez SS, Parvez M, Ohmae Y, Iida O (2003) Screening of 239 medicinal plant species for allelopathic activity using the sandwich method. Weed Biol Manag 3:233–241

    Article  Google Scholar 

  • Fujii Y, Tanabe T, Murakami A, Kawaoka A, Murakami K (2009) Study of clonal methods in Eucalyptus globulus. Combination effect of rooting regulators on in vitro rooting. Forest Tree Breeding 232:34–37 (in Japanese with English summary)

    Google Scholar 

  • Gao X, Ren Z, Zhao Y, Zhang H (2003) Overexpression of SOD2 increases salt tolerance of Arabidopsis. Plant Physiol 133:1873–1881

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Häggman H, Raybould A, Borem A, Fox T, Handley L, Hertzberg M, Lu MZ, Macdonald P, Oguchi T, Pasquali G, Pearson L, Peter G, Quemada H, Seguin A, Tattersall K, Ulian E, Walter C, McLean M (2013) Genetically engineered trees for plantation forests: key considerations for environmental risk assessment. Plant Biotechnol J 11(7):785–798

  • Hayashi H, Mustardy L, Deshnium P, Ida M, Murata N (1997) Transformation of Arabidopsis thaliana with the codA gene for choline oxidase; accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J 12:133–142

    Article  CAS  PubMed  Google Scholar 

  • Ikuta S, Imamura S, Misaki H, Horiuti Y (1977) Purification and characterization of choline oxidase from Arthrobacter globiformis. J Biochem 82:1741–1749

    CAS  PubMed  Google Scholar 

  • Incharoensakdi A, Takabe T, Akazawa T (1986) Effect of betaine on enzyme activity and subunit interaction of ribulose-1, 5-bisphosphate carboxylase/oxygenase from Aphanothece halophytica. Plant Physiol 81:1044

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • James C (2012) Global status of commercialized biotech/GM crops. ISAAA, Ithaca

    Google Scholar 

  • James RR, Di Fazio SP, Brunner AM, Strauss SH (1998) Environmental effects of genetically engineered woody biomass crops. Biomass Bioenergy 14:403–414

    Article  CAS  Google Scholar 

  • Khan MS, Yu X, Kikuchi A, Asahina M, Watanabe KN (2009) Genetic engineering of glycine betaine biosynthesis to enhance abiotic stress tolerance in plants. Plant Biotechnol 26:125–134

    Article  CAS  Google Scholar 

  • Kikuchi A, Kawaoka A, Shimazaki T, Yu X, Ebinuma H, Watanabe KN (2006) Trait stability and environmental biosafety assessments on three transgenic eucalyptus lines (Eucalyptus camaldulensis Dehnh. codA 12-5B, codA 12-5C, codA 20-C) conferring salt tolerance. Breeding Res 8:17–26

  • Kikuchi A, Watanabe K, Tanaka Y, Kamada H (2008) Recent progress on environmental biosafety assessment of genetically modified trees and floricultural plants in Japan. Plant Biotechnol 25:9–15

    Article  Google Scholar 

  • Kikuchi A, Yu X, Shimazaki T, Kawaoka A, Ebinuma H, Watanabe KN (2009) Allelopathy assessments for the environmental biosafety of the salt-tolerant transgenic Eucalyptus camaldulensis, genotypes codA12-5B, codA 12-5C, and codA 20C. J Wood Sci 55:149–153

    Article  CAS  Google Scholar 

  • Lelmen KE, Yu X, Kikuchi A, Shimazaki T, Mimura M, Watanabe KN (2010) Mycorrhizal colonization of transgenic Eucalyptus camaldulensis carrying the mangrin gene for salt tolerance. Plant Biotechnol 27:339–344

    Article  CAS  Google Scholar 

  • Lottmann J, O’Callaghan M, Baird D, Walter C (2010) Bacterial and fungal communities in the rhizosphere of field-grown genetically modified pine trees (Pinus radiata D.). Environ Biosafety Res 9:25–40

    Article  CAS  PubMed  Google Scholar 

  • Matsunaga E, Nanto K, Oishi M, Ebinuma H, Morishita Y, Sakurai N, Suzuki H, Shibata D, Shimada T (2012) Agrobacterium-mediated transformation of Eucalyptus globulus using explants with shoot apex with introduction of bacterial choline oxidase gene to enhance salt tolerance. Plant Cell Rep 31:225–235

    Article  CAS  PubMed  Google Scholar 

  • Mullins KV, Llewellyn DJ, Hartney VJ, Strauss S, Dennis ES (1997) Regeneration and transformation of Eucalyptus camaldulensis. Plant Cell Rep 16:787–791

    Article  CAS  Google Scholar 

  • Nishimura H (1987) Eucalypts as Biochemical Resources in the Future. Uchida Rokakuho, Tokyo

    Google Scholar 

  • OECD (1992) Safety considerations for biotechnology. Organisation for Economic Co-operation and Development

  • Perry JN, Ter Braak CJ, Dixon PM, Duan JJ, Hails RS, Huesken A, Lavielle M, Marvier M, Scardi M, Schmidt K, Tothmeresz B, Schaarschmidt F, van der Voet H (2009) Statistical aspects of environmental risk assessment of GM plants for effects on non-target organisms. Environ Biosafety Res 8:65–78

    Article  PubMed  Google Scholar 

  • Prakash MG, Gurumurthi K (2009) Genetic transformation and regeneration of transgenic plants from precultured cotyledon and hypocotyl explants of Eucalyptus tereticornis Sm. using Agrobacterium tumefaciens. In Vitro Cell Dev Biol Plant 45:429–434

    Article  CAS  Google Scholar 

  • Pryor LD (1976) The biology of eucalypts. Arnold, London

    Google Scholar 

  • Sakamoto A, Murata AN (1998) Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol Biol 38:1011–1019

    Article  CAS  PubMed  Google Scholar 

  • Shimazaki T, Kikuchi A, Matsunaga E, Nanto K, Shimada T, Watanabe KN (2009) Establishment of a homogenized method for environmental biosafety assessments of transgenic plants. Plant Biotechnol 26:143–148

    Article  CAS  Google Scholar 

  • Spokevicius AV, Van Beveren K, Leitch MA, Bossinger G (2005) Agrobacterium-mediated in vitro transformation of wood-producing stem segments in eucalypts. Plant Cell Rep 23:617–624

    Article  CAS  PubMed  Google Scholar 

  • Strauss SH, Howe GT, Goldfarb B (1991) Prospects for genetic engineering of insect resistance in forest trees. For Ecol Manag 43:181–209

    Article  Google Scholar 

  • Strauss SH, Tan H, Boerjan W, Sedjo R (2009) Strangled at birth? Forest biotech and the Convention on Biological Diversity. Nat Biotechnol 27:519–527

    Article  CAS  PubMed  Google Scholar 

  • Tournier V, Grat S, Marque C, El Kayal W, Penchel R, de Andrade G, Boudet AM, Teulieres C (2003) An efficient procedure to stably introduce genes into an economically important pulp tree (Eucalyptus grandis × Eucalyptus urophylla). Transgenic Res 12:403–411

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Kikuchi A, Matsunaga E, Morishita Y, Nanto K, Sakurai N, Suzuki H, Shibata D, Shimada T, Watanabe KN (2009) Establishment of the evaluation system of salt tolerance on transgenic woody plants in the special netted-house. Plant Biotechnol 26:135–141

    Article  CAS  Google Scholar 

  • Yu X, Kikuchi A, Matsunaga E, Morishita Y, Nanto K, Sakurai N, Suzuki H, Shibata D, Shimada T, Watanabe KN (2013a) The choline oxidase gene codA confers salt tolerance to transgenic Eucalyptus globulus in a semi-confined condition. Mol Biotechnol 54:320–330

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Kikuchi A, Shimazaki T, Yamada A, Ozeki Y, Matsunaga E, Ebinuma H, Watanabe KN (2013b) Assessment of the salt tolerance and environmental biosafety of Eucalyptus camaldulensis harboring a mangrin transgene. J Plant Res 30:357–363

    CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the New Energy and Industrial Technology Development Organization (NEDO) of Japan (http://www.nedo.go.jp/english/index.html); by a Grant in Aid from the Japan Society for the Promotion of Science (JSPS) (Grant-in-Aid for Scientific Research (A) #21248001) (http://www.jsps.go.jp/english/index.html); and by a grant from Plant Transgenic Design Initiative, Gene Research Center, University of Tsukuba, Japan (http://ptrad.gene.tsukuba.ac.jp/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Kikuchi.

Additional information

Taichi Oguchi and Yuko Kashimura have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 257 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oguchi, T., Kashimura, Y., Mimura, M. et al. A multi-year assessment of the environmental impact of transgenic Eucalyptus trees harboring a bacterial choline oxidase gene on biomass, precinct vegetation and the microbial community. Transgenic Res 23, 767–777 (2014). https://doi.org/10.1007/s11248-014-9809-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-014-9809-9

Keywords

Navigation