Skip to main content

Advertisement

Log in

Antisense expression of peach mildew resistance locus O (PpMlo1) gene confers cross-species resistance to powdery mildew in Fragaria x ananassa

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Powdery mildew (PM) is one of the major plant pathogens. The conventional method of PM control includes frequent use of sulfur-based fungicides adding to production costs and potential harm to the environment. PM remains a major scourge for Rosaceae crops where breeding approaches mainly resort to gene-for-gene resistance. We have tested an alternate source of PM resistance in Rosaceae. Mildew resistance locus O (MLO) has been well studied in barley due to its role in imparting broad spectrum resistance to PM. We identified PpMlo1 (Prunus persica Mlo) in peach and characterized it further to test if a similar mechanism of resistance is conserved in Rosaceae. Due to its recalcitrance in tissue culture, reverse genetic studies involving PpMloI were not feasible in peach. Therefore, Fragaria x ananassa LF9 line, a taxonomic surrogate, was used for functional analysis of PpMlo1. Agrobacterium-mediated transformation yielded transgenic strawberry plants expressing PpMlo1 in sense and antisense orientation. Antisense expression of PpMlo1 in transgenic strawberry plants conferred resistance to Fragaria-specific powdery mildew, Podosphaera macularis. Phylogenetic analysis of 208 putative Mlo gene copies from 35 plant species suggests a large number of duplications of this gene family prior to the divergence of monocots and eudicots, early in eudicot diversification. Our results indicate that the Mlo-based resistance mechanism is functional in Rosaceae, and that Fragaria can be used as a host to test mechanistic function of genes derived from related tree species. To the best of our knowledge, this work is one of the first attempts at testing the potential of using a Mlo-based resistance strategy to combat powdery mildew in Rosaceae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Attanayake RN, Glawe DA, McPhee KE, Dugan FM, Chen W (2010) Erysiphe trifolii—a newly recognized powdery mildew pathogen of pea. Plant Pathol 59(4):712–720. doi:10.1111/j.1365-3059.2010.02306.x

    Article  CAS  Google Scholar 

  • Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic DNA. J Mol Biol 268(1):78–94

    Article  PubMed  CAS  Google Scholar 

  • Buschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, VanDaelen R, VanderLee T, Diergaarde P, Groenendijk J, Topsch S, Vos P, Salamini F, Schulze-Lefert P (1997) The barley mlo gene: a novel control element of plant pathogen resistance. Cell 88(5):695–705

    Article  PubMed  CAS  Google Scholar 

  • Chen ZY, Noir S, Kwaaitaal M, Hartmann HA, Wu MJ, Mudgil Y, Sukumar P, Muday G, Panstruga R, Jones AM (2009) Two seven-transmembrane domain mildew resistance locus O proteins cofunction in Arabidopsis root thigmomorphogenesis. Plant Cell 21(7):1972–1991

    Article  PubMed  CAS  Google Scholar 

  • Collins TJ (2007) ImageJ for microscopy. Biotechniques 43(1 Suppl):25–30

    Article  PubMed  Google Scholar 

  • Consonni C, Humphry ME, Hartmann HA, Livaja M, Durner J, Westphal L, Vogel J, Lipka V, Kemmerling B, Schulze-Lefert P, Somerville SC, Panstruga R (2006) Conserved requirement for a plant host cell protein in powdery mildew pathogenesis. Nat Genet 38(6):716–720

    Article  PubMed  CAS  Google Scholar 

  • Devoto A, Piffanelli P, Nilsson I, Wallin E, Panstruga R, von Heijne G, Schulze-Lefert P (1999) Topology, subcellular localization, and sequence diversity of the Mlo family in plants. J Biol Chem 274(49):34993–35004

    Article  PubMed  CAS  Google Scholar 

  • Devoto A, Hartmann HA, Piffanelli P, Elliott C, Simmons C, Taramino G, Goh CS, Cohen FE, Emerson BC, Schulze-Lefert P, Panstruga R (2003) Molecular phylogeny and evolution of the plant-specific seven-transmembrane MLO family. J Mol Evol 56(1):77–88

    Article  PubMed  CAS  Google Scholar 

  • Edgar RC (2004) Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797

    Article  PubMed  CAS  Google Scholar 

  • Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8(3):175–185

    Article  PubMed  CAS  Google Scholar 

  • Feechan A, Jermakow AM, Torregrosa L, Panstruga R, Dry IB (2008) Identification of grapevine MLO gene candidates involved in susceptibility to powdery mildew. Funct Plant Biol 35(12):1255–1266

    Article  CAS  Google Scholar 

  • Flor HH (1971) Current status of the gene-for-gene concept. Annu Rev Phytopathol 9:275–276

    Article  Google Scholar 

  • Folta KM, Dhingra A, Howard L, Stewart PJ, Chandler CK (2006) Characterization of LF9, an octoploid strawberry genotype selected for rapid regeneration and transformation. Planta 224(5):1058–1067

    Article  PubMed  CAS  Google Scholar 

  • Galtier N (2001) Maximum-likelihood phylogenetic analysis under a covarion-like model. Mol Biol Evol 18(5):866–873

    Article  PubMed  CAS  Google Scholar 

  • Georgi LL, Wang Y, Yvergniaux D, Ormsbee T, Inigo M, Reighard G, Abbott AG (2002) Construction of a BAC library and its application to the identification of simple sequence repeats in peach (Prunus persica (L.) Batsch). Theor App Genetics 105(8):1151–1158

    Article  CAS  Google Scholar 

  • Glawe DA (2008) The powdery mildews: a review of the world’s most familiar (yet poorly known) plant pathogens. Annu Rev Phytopathol 46:27–51. doi:10.1146/annurev.phyto.46.081407.104740

    Article  PubMed  CAS  Google Scholar 

  • Gordon D, Abajian C, Green P (1998) Consed: a graphical tool for sequence finishing. Genome Res 8(3):195–202

    Article  PubMed  CAS  Google Scholar 

  • Huckelhoven R, Fodor J, Preis C, Kogel KH (1999) Hypersensitive cell death and papilla formation in barley attacked by the powdery mildew fungus are associated with hydrogen peroxide but not with salicylic acid accumulation. Plant Physiol 119(4):1251–1260

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: bayesian inference of phylogenetic trees. Bioinformatics 17(8):754–755

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Larget B, Miller RE, Ronquist F (2002) Potential applications and pitfalls of Bayesian inference of phylogeny. Syst Biol 51(5):673–688. doi:10.1080/10635150290102366

    Article  PubMed  Google Scholar 

  • Humphry M, Reinstadler A, Ivanov S, Bisseling T, Panstruga R (2011) Durable broad-spectrum powdery mildew resistance in pea er1 plants is conferred by natural loss-of-function mutations in PsMLO1. Mol Plant Pathol. doi:10.1111/j.1364-3703.2011.00718.x

    PubMed  Google Scholar 

  • Jorgensen JH (1992) Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica 63(1–2):141–152

    Article  Google Scholar 

  • Kim MC, Panstruga R, Elliott C, Muller J, Devoto A, Yoon HW, Park HC, Cho MJ, Schulze-Lefert P (2002) Calmodulin interacts with MLO protein to regulate defence against mildew in barley. Nature 416(6879):447–450

    Article  PubMed  CAS  Google Scholar 

  • Korber B (2000) HIV signature and sequence variation analysis. Kluwer Academic Publishers, Computational Analysis of HIV Molecular Sequences

    Google Scholar 

  • Lalli DA, Decroocq V, Blenda AV, Schurdi-Levraud V, Garay L, Le Gall O, Damsteegt V, Reighard GL, Abbott AG (2005) Identification and mapping of resistance gene analogs (RGAs) in Prunus: a resistance map for Prunus. Theor Appl Genetics 111(8):1504–1513

    Article  CAS  Google Scholar 

  • Lewis PO (2001) Phylogenetic systematics turns over a new leaf. Trends Ecol Evol 16(1):30–37

    Article  PubMed  Google Scholar 

  • Lukashin AV, Borodovsky M (1998) GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res 26(4):1107–1115

    Article  PubMed  CAS  Google Scholar 

  • Lyngkjaer MF, Carver TL (2000) Conditioning of cellular defence responses to powdery mildew in cereal leaves by prior attack. Mol Plant Pathol 1(1):41–49. doi:10.1046/j.1364-3703.2000.00006.x

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Panstruga R (2005) Discovery of novel conserved peptide domains by ortholog comparison within plant multi-protein families. Plant Mol Biol 59(3):485–500

    Article  PubMed  CAS  Google Scholar 

  • Pavan S, Jacobsen E, Visser RGF, Bai Y (2010) Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance. Mol Breed 25(1):1–12. doi:10.1007/s11032-009-9323-6

    Article  PubMed  Google Scholar 

  • Peries OS (1962) Studies on strawberry mildew, caused by Spareotheca macularis (Wallr. Ex. Fries) Jaczewski: I. biology of the fungus. Ann Appl Biol 50:211–224

    Article  Google Scholar 

  • Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R (2005) InterProScan: protein domains identifier. Nucleic Acids Res 33:W116–W120

    Article  PubMed  CAS  Google Scholar 

  • Rusterucci C, Aviv DH, Holt BF, Dangl JL, Parker JE (2001) The disease resistance signalling components EDS1 and PAD4 are essential regulators of the cell death pathway controlled by LSD1 in arabidopsis. Plant Cell 13(10):2211–2224

    PubMed  CAS  Google Scholar 

  • Salamov AA, Solovyev VV (2000) Ab initio gene finding in Drosophila genomic DNA. Genome Res 10(4):516–522

    Article  PubMed  CAS  Google Scholar 

  • Schultheiss H, Dechert C, Kogel KH, Huckelhoven R (2002) A small GTP-binding host protein is required for entry of powdery mildew fungus into epidermal cells of barley. Plant Physiol 128(4):1447–1454

    Article  PubMed  CAS  Google Scholar 

  • Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signalling domains. Proc Natl Acad Sci USA 95(11):5857–5864

    Article  PubMed  CAS  Google Scholar 

  • Shulaev V, Korban SS, Sosinski B, Abbott AG, Aldwinckle HS, Folta KM, Iezzoni A, Main D, Arus P, Dandekar AM, Lewers K, Brown SK, Davis TM, Gardiner SE, Potter D, Veilleux RE (2008) Multiple models for Rosaceae genomics. Plant Physiol 147(3):985–1003

    Article  PubMed  CAS  Google Scholar 

  • Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, Delcher AL, Jaiswal P, Mockaitis K, Liston A, Mane SP, Burns P, Davis TM, Slovin JP, Bassil N, Hellens RP, Evans C, Harkins T, Kodira C, Desany B, Crasta OR, Jensen RV, Allan AC, Michael TP, Setubal JC, Celton JM, Rees DJ, Williams KP, Holt SH, Rojas JJ, Chatterjee M, Liu B, Silva H, Meisel L, Adato A, Filichkin SA, Troggio M, Viola R, Ashman TL, Wang H, Dharmawardhana P, Elser J, Raja R, Priest HD, Bryant DW Jr, Fox SE, Givan SA, Wilhelm LJ, Naithani S, Christoffels A, Salama DY, Carter J, Girona EL, Zdepski A, Wang W, Kerstetter RA, Schwab W, Korban SS, Davik J, Monfort A, Denoyes-Rothan B, Arus P, Mittler R, Flinn B, Aharoni A, Bennetzen JL, Salzberg SL, Dickerman AW, Velasco R, Borodovsky M, Veilleux RE, Folta KM (2011) The genome of woodland strawberry (Fragaria vesca). Nat Genet 43(2):109–116. doi:10.1038/ng.740

    Article  PubMed  CAS  Google Scholar 

  • Staskawicz BJ, Ausubel FM, Baker BJ, Ellis JG, Jones JDG (1995) Molecular-genetics of plant-disease resistance. Science 268(5211):661–667

    Article  PubMed  CAS  Google Scholar 

  • Takamatsu S, Niinomi S, Harada M, Havrylenko M (2010) Molecular phylogenetic analyses reveal a close evolutionary relationship between Podosphaera (Erysiphales: Erysiphaceae) and its rosaceous hosts. Persoonia 24:38–48

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) Clustal-W—improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

    Article  PubMed  CAS  Google Scholar 

  • ThordalChristensen H, Zhang ZG, Wei YD, Collinge DB (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J 11(6):1187–1194

    Article  CAS  Google Scholar 

  • Tor M, Lotze MT, Holton N (2009) Receptor-mediated signalling in plants: molecular patterns and programmes. J Exp Bot 60(13):3645–3654

    Article  PubMed  Google Scholar 

  • Tuffley C, Steel M (1998) Modeling the covarion hypothesis of nucleotide substitution. Math Biosci 147(1):63–91

    Article  PubMed  CAS  Google Scholar 

  • Vogel J, Somerville S (2000) Isolation and characterization of powdery mildew-resistant Arabidopsis mutants. Proc Natl Acad Sci USA 97(4):1897–1902

    Article  PubMed  CAS  Google Scholar 

  • von Arnim AG, Deng XW, Stacey MG (1998) Cloning vectors for the expression of green fluorescent protein fusion proteins in transgenic plants. Gene 221(1):35–43

    Article  Google Scholar 

  • Yin ZC, Chen J, Zeng LR, Goh ML, Leung H, Khush GS, Wang GL (2000) Characterizing rice lesion mimic mutants and identifying a mutant with broad-spectrum resistance to rice blast and bacterial blight. Mol Plant Microbe Interact 13(8):869–876

    Article  PubMed  CAS  Google Scholar 

  • Zhou JM, Loh YT, Bressan RA, Martin GB (1995) The tomato gene Pti1 encodes a serine/threonine kinase that is phosphorylated by Pto and is involved in the hypersensitive response. Cell 83(6):925–935

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Washington State University start-up funds to DM and AD. The authors would like to thank Albert G. Abbott, Donna Lalli, Tatyana Zhebentyayeva and Chris Saski at Clemson University for useful discussions and BAC sequencing; Kevin Folta at University of Florida for the Fragaria x ananassa LF9 line; Washington State University colleagues Patrick Moore for providing Fragaria-virulent powdery mildew Podosphaera macularis, Frank Dugan for discussions on pathogen challenge experiments and Pat Okubara for her advice on quantifying pathogen infection. Authors would like to acknowledge the assistance of Nathan Tarlyn in the AD laboratory for maintenance of plants used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Dhingra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 443 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiwan, D., Roalson, E.H., Main, D. et al. Antisense expression of peach mildew resistance locus O (PpMlo1) gene confers cross-species resistance to powdery mildew in Fragaria x ananassa . Transgenic Res 22, 1119–1131 (2013). https://doi.org/10.1007/s11248-013-9715-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-013-9715-6

Keywords

Navigation