Skip to main content
Log in

Characterization of LF9, an octoploid strawberry genotype selected for rapid regeneration and transformation

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Cultivated strawberry (Fragaria ×ananassa) is a valuable crop, yet the absence of a rapid, high-throughput transgenic system has precluded meaningful application of biotechnology and translation of information from plant models to this crop. A new octoploid strawberry genetic line Laboratory Festival #9 has been identified, selected solely for its rapid regeneration and efficient transformation. Direct organogenesis has been achieved from all tissues tested, with rapidly-growing shoot initials visible in as few as 13 days. The conditions for optimal shoot regeneration, transformant selection, root generation, and plant acclimatization are presented. The progression from explant to plant in soil can be achieved in about 60 days. The development of transformation protocols in this rapid-cycling genotype allows high-throughput studies of gene function in the octoploid strawberry genetic background.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-dichlorophenoxyacetic acid

BA:

N6-benzyladenine

TDZ:

1-phenyl-3-(1,2,3-thiadiazol-5-yl) urea (also thidiazuron)

IBA:

Indole butyric acid

References

  • Aharoni A, Giri AP, Verstappen FW, Bertea CM, Sevenier R, Sun Z, Jongsma MA, Schwab W, Bouwmeester HJ (2004) Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species. Plant Cell 16:3110–3131

    Article  PubMed  CAS  Google Scholar 

  • Aharoni A, Keizer LC, Bouwmeester HJ, Sun Z, Alvarez-Huerta M, Verhoeven HA, Blaas J, van Houwelingen AM, De Vos RC, van der Voet H, Jansen RC, Guis M, Mol J, Davis RW, Schena M, van Tunen AJ, O’Connell AP (2000) Identification of the SAAT gene involved in strawberry flavor biogenesis by use of DNA microarrays. Plant Cell 12:647–662

    Article  PubMed  CAS  Google Scholar 

  • Alsheikh MK, Suso HP, Robson M, Battey NH, Wetten A (2002) Appropriate choice of antibiotic and Agrobacterium strain improves transformation of anti biotic-sensitive Fragaria vesca and F.v. semperflorens. Plant Cell Rep 20:1173–1180

    Article  CAS  Google Scholar 

  • Barcelo M, El-Mansouri I, Mercado JA, Quesada MA, Alfaro FP (1998) Regeneration and transformation via Agrobacterium tumefaciens of the strawberry cultivar Chandler. Plant Cell Tissue Organ Cult 54:29–36

    Article  Google Scholar 

  • Barna KS, Wakhlu AK (1995) Effects of thidiazuron on micropropagation of rose. In Vitro Cell Dev Biol Plant 31:44–46

    Article  CAS  Google Scholar 

  • Bingham ET (1989) Registration of Regen-S Alfalfa germplasm useful in tissue-culture and transformation research. Crop Sci 29:1095–1096

    Article  Google Scholar 

  • Caboni E, Tonelli MG (1999) Effect of 1,2-benzisoxazole-3-acetic acid on adventitious shoot regeneration and in vitro rooting in apple. Plant Cell Rep 18:985–988

    Article  CAS  Google Scholar 

  • Chandler C, Legard D, Dunigan D, Crocker T, Sims T (2000) ‘Strawberry Festival’ strawberry. HortScience 35:1366–1367

    Google Scholar 

  • Davis TM, Yu H (1997) A linkage map of the diploid strawberry, Fragaria vesca. J Hered 88:215–221

    CAS  Google Scholar 

  • Folta K, Staton M, Stewart P, Jung S, Bies D, Jesudurai C, Main D (2005) Expressed sequence tags (ESTs) and simple sequence repeat (SSR) markers from octoploid strawberry (Fragaria × ananassa). BMC Plant Biol 5:12

    Article  PubMed  CAS  Google Scholar 

  • Gruchala A, Korbin M, Zurawicz E (2004) Conditions of transformation and regeneration of ‘Induka’ and ‘Elista’ strawberry plants. Plant Cell Tissue Organ Cult 79:153–160

    Article  CAS  Google Scholar 

  • Harrison EP, McQueen-Mason SJ, Manning K (2001) Expression of six expansion genes in relation to extension activity in developing strawberry fruit. J Exp Bot 52:1437–1446

    Article  PubMed  CAS  Google Scholar 

  • Jordan M, Roveraro C (2004) In vitro culture of Quillaja saponaria Mol. (Soap-bark tree), Rosaceae. Eur J Hortic Sci 69:73–78

    CAS  Google Scholar 

  • Kumar S, Sharma P, Pental D (1998) A genetic approach to in vitro regeneration of non-regenerating cotton (Gossypium hirsutum L.) cultivars. Plant Cell Rep 18:59–63

    Article  CAS  Google Scholar 

  • Landi L, Mezzetti B (2006) TDZ, auxin and genotype effects on leaf organogenesis in Fragaria. Plant Cell Rep 25:281–288

    Article  PubMed  CAS  Google Scholar 

  • Leblay C, Chevreau E, Raboin LM (1991) Adventitious shoot regeneration from in vitro leaves of several pear cultivars (Pyrus communis L). Plant Cell Tissue Organ Cult 25:99–105

    CAS  Google Scholar 

  • Liu ZR, Sanford JC (1988) Plant-regeneration by organogenesis from strawberry leaf and runner tissue. Hortscience 23:1057–1059

    Google Scholar 

  • Manning K (1994) Changes in gene-expression during strawberry fruit ripening and their regulation by auxin. Planta 194:62–68

    Article  CAS  Google Scholar 

  • Manning K (1998) Isolation of a set of ripening-related genes from strawberry: their identification and possible relationship to fruit quality traits. Planta 205:622–631

    Article  PubMed  CAS  Google Scholar 

  • Miguel CM, Druart P, Oliveira MM (1996) Shoot regeneration from adventitious buds induced on juvenile and adult almond (Prunus dulcis Mill) explants. In Vitro Cell Dev Biol Plant 32:148–153

    Article  Google Scholar 

  • Mok MC, Mok DWS, Armstrong DJ, Shudo K, Isogai Y, Okamoto T (1982) Cytokinin activity of N-phenyl-N’-1,2,3-thiadiazol-5-urea (Thidiazuron). Phytochemistry 21:1509–1511

    Article  CAS  Google Scholar 

  • Nehra NS, Chibbar RN, Kartha KK, Datla RSS, Crosby WL, Stushnoff C (1990a) Agrobacterium-mediated transformation of strawberry calli and recovery of transgenic plants. Plant Cell Rep 9:10–13

    CAS  Google Scholar 

  • Nehra NS, Chibbar RN, Kartha KK, Datla RSS, Crosby WL, Stushnoff C (1990b) Genetic-transformation of strawberry by Agrobacterium tumefaciens using a leaf disk regeneration system. Plant Cell Rep 9:293–298

    CAS  Google Scholar 

  • Niemirowicz-Szcytt K (1989) Preliminary studies on inbreeding in strawberry (Fragaria × ananassa Duch.). Acta Hortic 265:97–104

    Google Scholar 

  • Oosumi T, Gruszewski HA, Blischak LA, Baxter AJ, Wadl PA, Shuman JL, Veilleux RE, Shulaev V (2006) High-efficiency transformation of the diploid strawberry (Fragaria vesca) for functional genomics. Planta (in press)

  • Passey AJ, Barrett KJ, James DJ (2003) Adventitious shoot regeneration from seven commercial strawberry cultivars (Fragaria × ananassa Duch.) using a range of explant types. Plant Cell Rep 21:397–401

    PubMed  CAS  Google Scholar 

  • Ricardo VG, Coll Y, Castagnaro A, Ricci JCD (2003) Transformation of a strawberry cultivar using a modified regeneration medium. Hortscience 38:277–280

    Google Scholar 

  • Rugini E, Orlando R (1992) High-efficiency shoot regeneration from calluses of strawberry (Fragaria × ananassa-Duch) stipules of In vitro shoot cultures. J Hortic Sci 67:577–582

    Google Scholar 

  • Saito A, Suzuki M (1999) Plant regeneration from meristem-derived callus protoplasts of apple (Malus × domestica cv ‘Fuji’). Plant Cell Rep 18:549–553

    Article  CAS  Google Scholar 

  • Sargent DJ, Clarke J, Simpson DW, Tobutt KR, Arus P, Monfort A, Vilanova S, Denoyes-Rothan B, Rousseau M, Folta KM, Bassil NV, Battey NH (2006) An enhanced microsatellite map of diploid Fragaria. Theor Appl Genet 112:1349–1359

    Google Scholar 

  • Sargent DJ, Davis TM, Tobutt KR, Wilkinson MJ, Battey NH, Simpson DW (2004) A genetic linkage map of microsatellite, gene-specific and morphological markers in diploid Fragaria. Theor Appl Genet 109:1385–1391

    Google Scholar 

  • Uzunova KM (2000) Regeneration and possibility for genetic transformation of rose. Biotechnol Biotechnol Equip 14:71–74

    CAS  Google Scholar 

  • Visser C, Qureshi JA, Gill R, Saxena PK (1992) Morphoregulatory role of thidiazuron–substitution of auxin and cytokinin requirement for the induction of somatic embryogenesis in geranium hypocotyl cultures. Plant Physiol 99:1704–1707

    Article  PubMed  CAS  Google Scholar 

  • Woolley LC, James DJ, Manning K (2001) Purification and properties of an endo-beta-1,4-glucanase from strawberry and down-regulation of the corresponding gene, cel1. Planta 214:11–21

    Article  PubMed  CAS  Google Scholar 

  • Yang HY, Schmidt H (1992) Investigations on the regeneration of adventitious shoots in vitro in cherries. Gartenbauwissenschaft 57:7–10

    Google Scholar 

  • Zhao Y, Liu QZ, Davis RE (2004) Transgene expression in strawberries driven by a heterologous phloem-specific promoter. Plant Cell Rep 23:224–230

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully recognize Dawn Bies and Holly Loucas for technical assistance and advice, and Dr. Prakash Lakshmanan for critical assessment of this manuscript. This work was supported by funding from the University of Florida Strawberry Breeding Program (PJS and CKC) and startup funding from the University of Florida Horticultural Sciences Department (KMF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin M. Folta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Folta, K.M., Dhingra, A., Howard, L. et al. Characterization of LF9, an octoploid strawberry genotype selected for rapid regeneration and transformation. Planta 224, 1058–1067 (2006). https://doi.org/10.1007/s00425-006-0278-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0278-0

Keywords

Navigation