Skip to main content
Log in

Comparability of imazapyr-resistant Arabidopsis created by transgenesis and mutagenesis

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

The Arabidopsis CSR1 gene codes for the enzyme acetohydroxyacid synthase (AHAS, EC 2.2.1.6), also known as acetolactate synthase, which catalyzes the first step in branched-chain amino acid biosynthesis. It is inhibited by several classes of herbicides, including the imidazolinone herbicides, such as imazapyr; however, a substitution mutation in csr1-2 (Ser-653-Asn) confers selective resistance to the imidazolinones. The transcriptome of csr1-2 seedlings grown in the presence of imazapyr has been shown in a previous study (Manabe in Plant Cell Physiol 48:1340–1358, 2007) to be identical to that of wild-type seedlings indicating that AHAS is the sole target of imazapyr and that the mutation is not associated with pleiotropic effects detectable by transcriptome analysis. In this study, a lethal null mutant, csr1-7, created by a T-DNA insertion into the CSR1 gene was complemented with a randomly-inserted 35S/CSR1-2/NOS transgene in a subsequent genetic transformation event. A comparison of the csr1-2 substitution mutant with the transgenic lines revealed that all were resistant to imazapyr; however, the transgenic lines yielded significantly higher levels of resistance and greater biomass accumulation in the presence of imazapyr. Microarray analysis revealed few differences in their transcriptomes. The most notable was a sevenfold to tenfold elevation in the CSR1-2 transcript level. The data indicate that transgenesis did not create significant unintended pleiotropic effects on gene expression and that the mutant and transgenic lines were highly similar, except for the level of herbicide resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdeen A, Schnell J, Miki B (2010) Transcriptome analysis reveals absence of unintended effects in drought-tolerant transgenic plants overexpressing the transcription factor ABF3. BMC Genomics 11:69

    Article  PubMed  Google Scholar 

  • Batista R, Saibo N, Lourenço T, Oliveira MM (2008) Microarray analyses reveal that plant mutagenesis may induce more transcriptomic changes than transgene insertion. Proc Natl Acad Sci USA 105:3640–3645

    Article  PubMed  CAS  Google Scholar 

  • Baudo MM, Lyons R, Powers S, Pastori GM, Edwards KJ, Holdsworth MJ, Shewry PR (2006) Transgenesis has less impact on the transcriptome of wheat grain than conventional breeding. Plant Biotechnol J 4:369–380

    Article  PubMed  CAS  Google Scholar 

  • Cellini F, Chesson A, Colquhoun I, Constable A, Davies HV, Engel KH, Gatehouse AMR, Kärenlampi S, Kok EJ, Leguay J–J, Lehesranta S, Noteborn HPJM, Pedersen J, Smith M (2004) Unintended effects and their detection in genetically modified crops. Food Chem Toxicol 42:1089–1125

    Article  PubMed  CAS  Google Scholar 

  • Charest PJ, Hattori J, DeMoor J, Iyer VN, Miki BL (1990) In vitro study of transgenic tobacco expressing Arabidopsis wild type and mutant acetohydroxyacid synthase genes. Plant Cell Rep 8:643–646

    Article  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Das M, Reichman JR, Haberer G, Welzl G, Aceituno FF, Mader MT, Watrud LS, Pfleeger TG, Gutiérrez RA, Schäffner AR, Olszyk DM (2010) A composite transcriptional signature differentiates responses towards closely related herbicides in Arabidopsis thaliana and Brassica napus. Plant Mol Biol 72:545–556

    Article  PubMed  CAS  Google Scholar 

  • Davies H (2010) A role for “omics” technologies in food safety assessment. Food Control 21:1601–1610

    Article  Google Scholar 

  • Duggleby RG, McCourt JA, Guddat LW (2008) Structure and mechanism of inhibition of plant acetohydroxyacid synthase. Plant Physiol Biochem 46:309–324

    Article  PubMed  CAS  Google Scholar 

  • El Ouakfaoui S, Miki B (2005) The stability of the Arabidopsis transcriptome in transgenic plants expressing the marker genes nptII and uidA. Plant J 41:791–800

    Article  PubMed  Google Scholar 

  • Höfgen R, Laber B, Schüttke I, Klonus A-K, Streber W, Pohlenz H-D (1995) Repression of acetolactate synthase activity through antisense inhibition: molecular and biochemical analysis of transgenic potato (Solanum tuberosum L. cv Désirée) plants. Plant Physiol 107:469–477

    PubMed  Google Scholar 

  • Kogel K-H, Voll LM, Schäfer P, Jansen C, Wu Y, Langen G, Imani J, Hofmann J, Schmiedl A, Sonnewald S, von Wettstein D, Cook RJ, Sonnewald U (2010) Transcriptome and metabolome profiling of field-grown transgenic barley lack induced differences but show cultivar-specific variances. Proc Natl Acad Sci USA 107:6198–6203

    Article  PubMed  CAS  Google Scholar 

  • Kuiper HA, Kok EJ, Engel K-H (2003) Exploitation of molecular profiling techniques for GM food safety assessment. Current Opin Biotechnol 14:238–243

    Article  CAS  Google Scholar 

  • Lehesranta SJ, Davies HV, Shepherd LVT, Nunan N, McNicol JW, Auriola S, Koistinen KM, Suomalainen S, Kokko HI, Kärenlampi SO (2005) Comparison of tuber proteomes of potato varieties, landraces, and genetically modified lines. Plant Physiol 138:1690–1699

    Article  PubMed  CAS  Google Scholar 

  • Manabe Y, Tinker N, Colville A, Miki B (2007) CSR1, the sole target of imidazolinone herbicide in Arabidopsis thaliana. Plant Cell Physiol 48:1340–1358

    Article  PubMed  CAS  Google Scholar 

  • McCourt JA, Duggleby RG (2006) Acetohydroxyacid synthase and its role in the biosynthetic pathway for branched-chain amino acids. Amino Acids 31:173–210

    Article  PubMed  CAS  Google Scholar 

  • McCourt JA, Pang SS, King-Scott J, Guddat LW, Duggleby RG (2006) Herbicide-binding sites revealed in the structure of plant acetohydroxyacid synthase. Proc Natl Acad Sci USA 103:569–573

    Article  PubMed  CAS  Google Scholar 

  • McHughen A (2007) Fatal flaws in agbiotech regulatory policies. Nature Biotechnol 25:725–727

    Article  CAS  Google Scholar 

  • McHughen A, Smyth S (2008) US regulatory system for genetically modified [genetically modified organism (GMO), rDNA or transgenic] crop cultivars. Plant Biotechnol J 6:2–12

    PubMed  Google Scholar 

  • Ouellet T, Rutledge RG, Miki BL (1992) Members of the acetohydroxyacid synthase multigene family of Brassica napus have divergent patterns of expression. Plant J 2:321–330

    PubMed  CAS  Google Scholar 

  • Ouellet T, Mourad G, Brown D, King J, Miki B (1994) Regulation of acetohydroxyacid synthase activity levels in transgenic tobacco. Plant Sci 102:91–97

    Article  CAS  Google Scholar 

  • Park JR, McFarlane I, Phipps RH, Ceddia G (2011) The role of transgenic crops in sustainable development. Plant Biotechnol J 9:2–21

    Article  Google Scholar 

  • Parrott W, Chassy B, Ligon J, Meyer L, Petrick L, Zhou J, Herman R, Delaney B, Levine M (2010) Application of food and feed safety assessment principles to evaluate transgenic approaches to gene modulation in crops. Food Chem Toxicol 48:1773–1790

    Article  PubMed  CAS  Google Scholar 

  • Parry MAJ, Madjwick PJ, Bayon C, Tearall K, Hernandez-Lopez A, Baudo M, Rakszegi M, Hamada W, Al-Yassin A, Ouabbou H, Labhilili M, Phillips AL (2009) Mutation discovery for crop improvement. J Ext Bot 60:2817–2825

    Article  CAS  Google Scholar 

  • Rosso MG, Li Y, Strizhov N, Reiss B, Dekker K, Weisshaar B (2003) An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant Mol Biol 53:247–259

    Article  PubMed  CAS  Google Scholar 

  • Rutledge RG, Ouellet T, Hattori J, Miki BL (1991) Molecular characterization and genetic origin of the Brassica napus acetohydroxyacid synthase multigene family. Mol Gen Genet 229:31–40

    Article  PubMed  CAS  Google Scholar 

  • Sanders A, Collier R, Trethewy A, Gould G, Sieker R, Tegeder M (2009) AAP1 regulates import of amino acids into developing Arabidopsis embryos. Plant J 59:540–552

    Article  PubMed  CAS  Google Scholar 

  • Sessions A, Burke E, Presting G, Aux G, McElver J, Patton D et al (2002) A high-throughput Arabidopsis reverse genetics system. Plant Cell 14:2985–2994

    Article  PubMed  CAS  Google Scholar 

  • Smyth S, McHughen A (2008) Regulating innovative crop technologies in Canada: the case of regulating genetically modified crops. Plant Biotechnol J 6:213–225

    Article  PubMed  Google Scholar 

  • Sunilkumar G, Mohr L, Lopata-Finch E, Emani C, Rathore KS (2002) Developmental and tissue-specific expression of CaMV 35S promoter in cotton as revealed by GFP. Plant Mol Biol 50:463–479

    Article  PubMed  CAS  Google Scholar 

  • Tan S, Evans RR, Dahmer ML, Singh BK, Shaner DL (2005) Imidazolinone-tolerant crops: history, current status and future. Pest Manag Sci 61:246–257

    Article  PubMed  CAS  Google Scholar 

  • Waugh R, Leader DJ, McCallum N, Caldwell D (2006) Harvesting the potential of induced biological diversity. Trends Plant Sci 11:71–79

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Arabidopsis Biological Resource Center for providing seeds of csr1-2 D, csr1-7 and csr1-8 and American Cyanamid (currently BASF) for providing the imazapyr, respectively. The research was funded by the Plant Biosafety Office, Plant Products Directorate, Canadian Food Inspection Agency and Feeds Section, Animal Health and Production Division, Animal Products Directorate, Canadian Food Inspection Agency. The funders did not influence the research, data, conclusions or publication.

Conflict of interest

The authors have declared that no conflict of interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaimie Schnell.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1. Arabidopsis CSR1 mutant alleles and transgenes (JPG 753 kb)

11248_2012_9597_MOESM2_ESM.pdf

Online Resource 2. Genes up- or down-regulated greater than twofold (P < 0.05) in transgenic lines. M is log2 fold change and P is FDR-adjusted P-value for Student’s t-test (PDF 81 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schnell, J., Labbé, H., Kovinich, N. et al. Comparability of imazapyr-resistant Arabidopsis created by transgenesis and mutagenesis. Transgenic Res 21, 1255–1264 (2012). https://doi.org/10.1007/s11248-012-9597-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-012-9597-z

Keywords

Navigation