Skip to main content
Log in

Comparison of the Activity of Pd–M (M: Ag, Co, Cu, Fe, Ni, Zn) Bimetallic Electrocatalysts for Oxygen Reduction Reaction

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Carbon-supported 7.5 wt% Pd–2.5 wt% M (M: Ag, Co, Cu, Fe, Ni, Zn) bimetallic catalysts were synthesized via wet impregnation and assessed as electrocatalysts for the oxygen reduction reaction (ORR) in acidic solution at room temperature, using the thin-film rotating disk electrode technique. Monometallic 10 wt% Pt/C and 10 wt% Pd/C catalysts, prepared via the same method, were used as reference materials. The highest activity for ORR among the tested electrocatalysts was exhibited by PdZn/C and the lowest by Pd/C and PdCu/C. The activity of the rest Pd-based electrocatalysts followed the descending order: PdNi/C > PdAg/C ≥ PdCo/C > PdFe/C. The specific activity of PdZn/C was higher than that of Pt/C (more than 3 times higher for potentials 0.35–0.5 V versus Ag/AgCl), whereas their mass activities were similar. PdNi/C and PdAg/C also exhibited higher specific activity than Pt/C for potentials lower than ca. 0.4 V versus Ag/AgCl, but their mass activity was lower. The high ORR activity of PdZn/C, which renders it a promising alternative to Pt-based cathodic electrocatalysts in PEMFCs, was associated with the presence of Pd–Zn alloy in the active phase, as revealed via XRD and TEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Larminie J, Dicks A (2003) Fuel cell systems explained, 2nd edn. Wiley, Chichester

    Book  Google Scholar 

  2. Antolini E (2009) Palladium in fuel cell catalysis. Energy Environ Sci 2:915–931

    Article  CAS  Google Scholar 

  3. Zhang L, Chang Q, Chen H, Shao M (2016) Recent advances in palladium-based electrocatalysts for fuel cell reactions and hydrogen evolution reaction. Nano Energy 29:198–219

    Article  CAS  Google Scholar 

  4. Chen A, Ostrom C (2015) Palladium-based nanomaterials: synthesis and electrochemical applications. Chem Rev 115:11999–12044

    Article  CAS  Google Scholar 

  5. Savadogo O, Lee K, Oishi K, Mitsushima S, Kamiya N, Ota KI (2004) New palladium alloys catalyst for the oxygen reduction reaction in an acid medium. Electrochem Commun 6:105–109

    Article  CAS  Google Scholar 

  6. Brouzgou A, Song SQ, Tsiakaras P (2012) Low and non-platinum electrocatalysts for PEMFCs: current status, challenges and prospects. Appl Catal B 127:371–388

    Article  CAS  Google Scholar 

  7. Lv H, Li D, Strmcnik D, Paulikas AP, Markovic NM, Stamenkovic VR (2016) Recent advances in the design of tailored nanomaterials for efficient oxygen reduction reaction. Nano Energy 29:149–165

    Article  CAS  Google Scholar 

  8. Shao M (2011) Palladium-based electrocatalysts for hydrogen oxidation and oxygen reduction reactions. J Power Sources 196:2433–2444

    Article  CAS  Google Scholar 

  9. Wang YJ, Zhao N, Fang B, Li H, Bi XT, Wang H (2015) Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape, and composition manipulation and their impact to activity. Chem Rev 115:3433–3467

    Article  CAS  Google Scholar 

  10. Bing Y, Liu H, Zhang L, Ghosh D, Zhang J (2010) Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chem Soc Rev 39:2184–2202

    Article  CAS  Google Scholar 

  11. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B 56:9–35

    Article  CAS  Google Scholar 

  12. Markovic NM, Schmidt TJ, Stamenkovic V, Ross PN (2001) Oxygen reduction reaction on Pt and Pt bimetallic surfaces: a selective review. Fuel Cells 1:105–116

    Article  CAS  Google Scholar 

  13. Greeley J, Stephens IEL, Bondarenko AS, Johansson TP, Hansen HA, Jaramillo TF, Rossmeisl J, Chorkendorff I, Nørskov JK (2009) Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat Chem 1:552–556

    Article  CAS  Google Scholar 

  14. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108:17886–17892

    Article  Google Scholar 

  15. Mavrikakis M, Hammer B, Nørskov JK (1998) Effect of strain on the reactivity of metal surfaces. Phys Rev Lett 81:2819–2822

    Article  Google Scholar 

  16. Liu P, Nørskov JK (2001) Ligand and ensemble effects in adsorption on alloy surfaces. Phys Chem Chem Phys 3:3814–3818

    Article  CAS  Google Scholar 

  17. Mayrhofer KJJ, Strmcnik D, Blizanac BB, Stamenkovic V, Arenz M, Markovic NM (2008) Measurement of oxygen reduction activities via the rotating disc electrode method: from Pt model surfaces to carbon-supported high surface area catalysts. Electrochim Acta 53:3181–3188

    Article  CAS  Google Scholar 

  18. Panagiotopoulou P (2004) Effect of morphological characteristics of TiO2-supported noble metal catalysts on their activity for the water-gas shift reaction. J Catal 225:327–336

    Article  CAS  Google Scholar 

  19. Lewis FA (1990) Solubility of hydrogen in metals. Pure Appl Chem 62:2091–2096

    Article  CAS  Google Scholar 

  20. Van der Vliet D, Wang C, Debe M, Atanasoski R, Markovic NM, Stamenkovic VR (2011) Platinum-alloy nanostructured thin film catalysts for the oxygen reduction reaction. Electrochim Acta 56:8695–8699

    Article  Google Scholar 

  21. Xiong L, Manthiram A (2005) Nanostructured Pt–M/C (M=Fe and Co) catalysts prepared by a microemulsion method for oxygen reduction in proton exchange membrane fuel cells. Electrochim Acta 50:2323–2329

    Article  CAS  Google Scholar 

  22. Łukaszewski M, Soszko M, Czerwiński A (2016) Electrochemical methods of real surface area determination of noble metal electrodes—an overview. Int J Electrochem Sci 11:4442–4469

    Article  Google Scholar 

  23. Pozio A, De Francesco M, Cemmi A, Cardellini F, Giorgi L (2002) Comparison of high surface Pt/C catalysts by cyclic voltammetry. J Power Sources 105:13–19

    Article  CAS  Google Scholar 

  24. Correia AN, Mascara LH, Machado SAS, Avaca LA (1997) Active surface area determination of Pd–Si alloys by H-adsorption. Electrochim Acta 42:493–495

    Article  CAS  Google Scholar 

  25. Gileadi E (2011) Physical Electrochemistry: Fundamentals, techniques and applications. Wiley, Weinheim

    Google Scholar 

  26. Gojković SL, Gupta S, Savinell RF (1999) Heat-treated iron(III) tetramethoxyphenyl porphyrin chloride supported on high-area carbon as an electrocatalyst for oxygen reduction Part II. Kinetics of oxygen reduction. J Electroanal Chem 462:63–72

    Article  Google Scholar 

  27. Lawson DR, Whiteley LD, Martin CR (1988) Oxygen reduction at Nafion film-coated platinum electrodes: transport and kinetics. J Electrochem Soc 135:2247–2253

    Article  CAS  Google Scholar 

  28. Watanabe M, Igarashi H, Yosioka K (1995) An experimental prediction of the preparation condition of Nafion-coated catalyst layers for PEFCs. Electrochim Acta 40:329–334

    Article  CAS  Google Scholar 

  29. Arenz M, Markovic NM (2010) Half-cell investigations of cathode catalysts for PEM fuel cells: from model systems to high-surface-area catalysts. In: Wieckowski A, Norskov JK (eds) Fuel cell science: theory, fundamentals, and biocatalysis. Wiley, Hoboken, pp 284–316

    Google Scholar 

  30. Sun Y, Hsieh Y-C, Chang L-C, Wu P-W, Lee J-F (2015) Synthesis of Pd9Ru@Pt nanoparticles for oxygen reduction reaction in acidic electrolytes. J Power Sources 277:116–123

    Article  CAS  Google Scholar 

  31. Tzorbatzoglou F, Brouzgou A, Tsiakaras P (2015) Electrocatalytic activity of Vulcan-XC-72 supported Pd, Rh and PdxRhy toward HOR and ORR. Appl Catal B 174–175:203–211

    Article  Google Scholar 

  32. Neergat M, Gunasekar V, Rahul R (2011) Carbon-supported Pd–Fe electrocatalysts for oxygen reduction reaction (ORR) and their methanol tolerance. J Electroanal Chem 658:25–32

    Article  CAS  Google Scholar 

  33. Tarasevich MR, Zhutaeva GV, Bogdanovskaya VA, Radina MV, Ehrenburg MR, Chalykh AE (2007) Oxygen kinetics and mechanism at electrocatalysts on the base of palladium–iron system. Electrochim Acta 52:5108–5118

    Article  CAS  Google Scholar 

  34. Song C, Zhang J (2008) Electrocatalytic oxygen reduction reaction. In: Zhang J (ed) PEM fuel cell electrocatalysts and catalyst layers. Springer, London

    Google Scholar 

  35. Sepa DB, Vojnovic MV, Damjanovic A (1981) Reaction intermediates as a controlling factor in the kinetics and mechanism of oxygen reduction at platinum electrodes. Electrochim Acta 26:781–793

    Article  CAS  Google Scholar 

  36. Ramos-Sánchez G, Yee-Madeira H, Solorza-Feria O (2008) PdNi electrocatalyst for oxygen reduction in acid media. Int J Hydrogen Energy 33:3596–3600

    Article  Google Scholar 

  37. Lee K, Savadogo O, Ishihara A, Mitsushima S, Kamiya N, Ota K-i (2006) Methanol-tolerant oxygen reduction electrocatalysts based on Pd-3D transition metal alloys for direct methanol fuel cells. J Electrochem Soc 153:A20–A24

    Article  CAS  Google Scholar 

  38. Zhao J, Sarkar A, Manthiram A (2010) Synthesis and characterization of Pd–Ni nanoalloy electrocatalysts for oxygen reduction reaction in fuel cells. Electrochim Acta 55:1756–1765

    Article  CAS  Google Scholar 

  39. Zhang L, Lee K, Zhang J (2007) The effect of heat treatment on nanoparticle size and ORR activity for carbon-supported Pd–Co alloy electrocatalysts. Electrochim Acta 52:3088–3094

    Article  CAS  Google Scholar 

  40. Liu H, Li W, Manthiram A (2009) Factors influencing the electrocatalytic activity of Pd100–xCox (0 ≤ x ≤ 50) nanoalloys for oxygen reduction reaction in fuel cells. Appl Catal B 90:184–194

    Article  CAS  Google Scholar 

  41. Li X, Huang Q, Zou Z, Xia B, Yang H (2008) Low temperature preparation of carbon-supported PdCo alloy electrocatalysts for methanol-tolerant oxygen reduction reaction. Electrochim Acta 53:6662–6667

    Article  CAS  Google Scholar 

  42. Wang W, Zheng D, Du C, Zou Z, Zhang X, Xia B, Yang H, Akins DL (2007) Carbon-supported Pd–Co bimetallic nanoparticles as electrocatalysts for the oxygen reduction reaction. J Power Sources 167:243–249

    Article  CAS  Google Scholar 

  43. Mustain WE, Kepler K, Prakash J (2007) CoPdx oxygen reduction electrocatalysts for polymer electrolyte membrane and direct methanol fuel cells. Electrochim Acta 52:2102–2108

    Article  CAS  Google Scholar 

  44. Tarasevich MR, Chalykh AE, Bogdanovskaya VA, Kuznetsova LN, Kapustina NA, Efremov BN, Ehrenburg MR, Reznikova LA (2006) Kinetics and mechanism of oxygen reduction reaction at CoPd system synthesized on XC72. Electrochim Acta 51:4455–4462

    Article  CAS  Google Scholar 

  45. Alexeyeva N, Sarapuu A, Tammeveski K, Vidal-Iglesias FJ, Solla-Gullón J, Feliu JM (2011) Electroreduction of oxygen on Vulcan carbon supported Pd nanoparticles and Pd–M nanoalloys in acid and alkaline solutions. Electrochim Acta 56:6702–6708

    Article  CAS  Google Scholar 

  46. Pires FI, Villullas HM (2012) Pd-based catalysts: influence of the second metal on their stability and oxygen reduction activity. Int J Hydrogen Energy 37:17052–17059

    Article  CAS  Google Scholar 

  47. Liu L, Samjeske G, Nagamatsu S-I, Sekizawa O, Nagasawa K, Takao S, Imaizumi Y, Yamamoto T, Uruga T, Iwasawa Y (2013) Dependences of the oxygen reduction reaction activity of Pd–Co/C and Pd–Ni/C alloy electrocatalysts on the nanoparticle size and lattice constant. Top Catal 57:595–606

    Article  Google Scholar 

  48. Martínez-Casillas DC, Vazquez-Huerta G, Perez-Robles JF, Solorza-Feria O (2010) Synthesis and characterization of PdAg nanoparticles as oxygen electrocatalyst in acidic medium. J New Mater Electrochem Syst 13:163–169

    Google Scholar 

  49. Martínez-Casillas DC, Vázquez-Huerta G, Pérez-Robles JF, Solorza-Feria O (2011) Electrocatalytic reduction of dioxygen on PdCu for polymer electrolyte membrane fuel cells. J Power Sources 196:4468–4474

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the European Union (European Social Fund—ESF) and national funds through the Operational Program “Bilateral S & T Cooperation between Greece and China from 2012 to 2014” of the National Strategic Reference Framework (NSRF) through the GSRT of the Ministry of Education (Project: 12CHN269).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Symeon Bebelis.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 756 KB)

Supplementary material 1 (PDF 755 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bampos, G., Bebelis, S., Kondarides, D.I. et al. Comparison of the Activity of Pd–M (M: Ag, Co, Cu, Fe, Ni, Zn) Bimetallic Electrocatalysts for Oxygen Reduction Reaction. Top Catal 60, 1260–1273 (2017). https://doi.org/10.1007/s11244-017-0795-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-017-0795-z

Keywords

Navigation