Skip to main content

Advertisement

Log in

The Effect of Heat-Treatment Temperature of Cobalt–Boron Catalysts on Their Activity in Sodium Borohydride Hydrolysis

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The activity of cobalt–boron catalysts in sodium borohydride hydrolysis has been correlated with change of structure in the active component of the catalysts upon their thermal treatment. It was shown that at temperatures to 300 °C there takes place loss of water and hydrogen from the catalysts without noticeable changes in activity. At temperatures above 300 °C the amorphous cobalt boride particles undergo crystallization to produce metallic cobalt with a hexagonal structure and this is seemingly the cause of the substantial fall in the rate of hydrogen generation in the presence of cobalt–boron catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yadava M, Xu Q (2012) Energy Environ Sci 5:9698–9725

    Article  Google Scholar 

  2. Jiang HL, Singh SK, Yan JM, Zhang XB, Xu Q (2010) ChemSusChem 5:541–549

    Article  Google Scholar 

  3. Demirci UB, Akdim O, Andrieux J, Hannauer J, Chamoun R, Miele P (2010) Fuel Cells 10:335–350

    Article  CAS  Google Scholar 

  4. Netskina OV, Fursenko RV, Komova OV, Odintsov ES, Simagina VI (2015) J Power Sources 273:278–281

    Article  CAS  Google Scholar 

  5. Simagina VI, Storozhenko PA, Netskina OV, Komova OV, Odegova GV, Samoilenko TY, Gentsler AG (2007) Kinet Catal 48:168–175

    Article  CAS  Google Scholar 

  6. Simagina VI, Netskina OV, Komova OV, Odegova GV, Kochubei DI, Ishchenko AV (2008) Kinet Catal 49:568–573

    Article  CAS  Google Scholar 

  7. Ozerova AM, Simagina VI, Komova OV, Netskina OV, Odegova GV, Bulavchenko OA, Rudina NA (2012) J Alloys Compd 513:266–272

    Article  CAS  Google Scholar 

  8. Akdim O, Demirci UB, Muller D, Miele P (2009) Int J Hydrogen Energy 34:2631–2637

    Article  CAS  Google Scholar 

  9. Akdim O, Demirci UB, Miele P (2009) Int J Hydrogen Energy 34:9444–9449

    Article  CAS  Google Scholar 

  10. Simagina VI, Komova OV, Ozerova AM, Netskina OV, Odegova GV, Kellerman DG, Bulavchenko OA, Ishchenko AV (2011) Appl Catal A 394:86–92

    Article  CAS  Google Scholar 

  11. Pfeil TL, Pourpoint TL, Groven LJ (2014) Int J Hydrogen Energy 39:2149–2159

    Article  CAS  Google Scholar 

  12. Lu A, Chen Y, Jin J, Yue G-H, Peng D-L (2012) J Power Sources 220:391–398

    Article  CAS  Google Scholar 

  13. Komova OV, Simagina VI, Netskina OV, Kellerman DG, Ishchenko AV, Rudina NA (2008) Catal Today 138:260–265

    Article  CAS  Google Scholar 

  14. Krishnan P, Advani SG, Prasad AK (2008) Int J Hydrogen Energy 33:7095–7102

    Article  CAS  Google Scholar 

  15. Ozerova AM, Bulavchenko OA, Komova OV, Netskina OV, Zaikovskii VI, Odegova GV, Simagina VI (2012) Kinet Catal 53:511–520

    Article  CAS  Google Scholar 

  16. Netskina OV, Ozerova AM, Komova OV, Odegova GV, Simagina VI (2015) Catal Today 245:86–92

    Article  CAS  Google Scholar 

  17. Wu C, Bai Y, Wu F, Yi B-L, Zhang H-M (2010) Int J Hydrogen Energy 35:2675–2679

    Article  CAS  Google Scholar 

  18. Simagina VI, Komova OV, Netskina OV (2014) In: Gromov AA, Teipel U (eds) Metal nanopowders: production, characterization, and energetic applications. Wiley, Germany

    Google Scholar 

  19. Simagina VI, Ozerova AM, Komova OV, Odegova GV, Kellerman DG, Fursenko RV, Odintsov ES, Netskina OV (2015) Catal Today 242:221–229

    Article  CAS  Google Scholar 

  20. Ding X-L, Yuan X, Jia C, Ma Z-F (2010) Int J Hydrogen Energy 35:11077–11084

    Article  CAS  Google Scholar 

  21. Patel N, Fernandes R, Miotello A (2010) J Catal 271:315–324

    Article  CAS  Google Scholar 

  22. Park J-H, Shakkthivel P, Kim H-J, Han M-K, Jang J-H, Kim Y-R, Kim H-S, Shul Y-G (2008) Int J Hydrogen Energy 33:1845–1852

    Article  CAS  Google Scholar 

  23. Lu Y-C, Chen M-S, Chen Y-W (2012) Int J Hydrogen Energy 37:4254–4258

    Article  CAS  Google Scholar 

  24. Chamoun R, Demirci UB, Cornu D, Zaatar Y, Khoury A, Khoury R, Miele P (2010) Appl Surf Sci 256:7684–7691

    Article  CAS  Google Scholar 

  25. Ye W, Zhang H, Xu D, Ma L, Yi B (2007) J Power Sources 164:544–548

    Article  CAS  Google Scholar 

  26. Liu Z, Guo B, Chan SH, Tang EH, Hong L (2008) J Power Sources 176:306–311

    Article  CAS  Google Scholar 

  27. Dai HB, Liang Y, Wang P, Cheng HM (2008) J Power Sources 177:17–23

    Article  CAS  Google Scholar 

  28. Huang YQ, Wang Y, Zhao RX, Shen PK, Wei ZD (2008) Int J Hydrogen Energy 33:7110–7115

    Article  CAS  Google Scholar 

  29. Yang C-C, Chen M-S, Chen Y-W (2011) Int J Hydrogen Energy 36:1418–1423

    Article  CAS  Google Scholar 

  30. Tian H, Guo Q, Xu D (2010) J Power Sources 195:2136–2142

    Article  CAS  Google Scholar 

  31. Zhao J, Ma H, Chen J (2007) Int J Hydrogen Energy 32:4711–4716

    Article  CAS  Google Scholar 

  32. Jeong SU, Cho EA, Nam SW, Oh IH, Jung UH, Kim SH (2007) Int J Hydrogen Energy 32:1749–1754

    Article  CAS  Google Scholar 

  33. Patel N, Fernandes R, Guella G, Kale A, Miotello A, Patton B, Zanchetta C (2008) J Phys Chem C 112:6968–6976

    Article  CAS  Google Scholar 

  34. Xu D, Dai P, Liu X, Cao C, Guo Q (2008) J Power Sources 182:616–620

    Article  CAS  Google Scholar 

  35. Demirci UB, Miele P (2010) Phys Chem Chem Phys 12(44):14651–14665

    Article  CAS  Google Scholar 

  36. Wu C, Wu F, Bai Y, Yi B, Zhang H (2005) Mater Lett 59:1748–1751

    Article  CAS  Google Scholar 

  37. Yuan X, Jia C, Ding X-L, Ma Z-F (2012) Int J Hydrogen Energy 37:995–1001

    Article  CAS  Google Scholar 

  38. Lee J, Kong KY, Jung CR, Cho E, Yoon SP, Han J, Lee T-G, Nam SW (2007) Catal Today 120:305–310

    Article  CAS  Google Scholar 

  39. Liang J, Li Y, Huang Y, Yang J, Tang H, Wei Z, Shen PK (2008) Int J Hydrogen Energy 33:4048–4054

    Article  CAS  Google Scholar 

  40. Kochubey DI (1992) EXAFS spectroscopy of catalysts. Nauka, Novosibirsk

    Google Scholar 

  41. Klementev KV (2001) J Phys D Appl Phys 34:209–217

    Article  CAS  Google Scholar 

  42. Rehr JJ, Ankudinov AL (2004) Rad Phys Chem 70:453–463

    Article  CAS  Google Scholar 

  43. Lu JM, Dreisinger DB, Cooper WC (1997) Hydrometallurgy 45:305–322

    Article  CAS  Google Scholar 

  44. Garron A, Swierczynski D, Bennici S, Auroux A (2009) Int J Hydrogen Energy 34:1185–1199

    Article  CAS  Google Scholar 

  45. Corrias A, Ennas G, Licheri G, Marongiu G, Paschina G (1990) Chem Mater 2:363–366

    Article  CAS  Google Scholar 

  46. Glavee GN, Klabunde KJ, Sorensen CM, Hadjapanayis GC (1992) Langmuir 8:771–773

    Article  CAS  Google Scholar 

  47. Li HX, Wu YD, Luo HS, Wang MG, Xu YP (2003) J Catal 214:15–25

    Article  CAS  Google Scholar 

  48. Shen B, Wei S, Fang K, Deng JF (1997) Appl Phys A Mater Sci Process 65:295–299

    Article  CAS  Google Scholar 

  49. Cavaliere S, Hannauer J, Demirci UB, Akdim O, Miele P (2011) Catal Today 170:3–12

    Article  CAS  Google Scholar 

  50. Glavee GN, Klabunde KJ, Sorensen CM, Hadjipanayis GC (1993) Langmuir 9:162–169

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Foundation for Basic Research (Grant No. 14-22-01045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Netskina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Netskina, O.V., Ozerova, A.M., Komova, O.V. et al. The Effect of Heat-Treatment Temperature of Cobalt–Boron Catalysts on Their Activity in Sodium Borohydride Hydrolysis. Top Catal 59, 1431–1437 (2016). https://doi.org/10.1007/s11244-016-0664-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-016-0664-1

Keywords

Navigation