Skip to main content
Log in

Stability of dimensionally stable anode for chlorine evolution reaction

  • Perspective Review
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Chlorine (Cl2) is one of the most important chemicals produced by the electrolysis of brine solutions and is a key raw material for many areas of industrial chemistry. For nearly half a century, dimensionally stable anode (DSA) made from a mixture of RuO2 and TiO2 solid oxides coated on Ti substrate has been the most widely used electrode for chlorine evolution reaction (CER). In harsh operating environments, the stability of DSAs remains a major challenge greatly affecting their lifetime. The deactivation of DSAs significantly increases the cost of the chlor-alkali industry due to the corrosion of Ru and the formation of the passivation layer TiO2. Therefore, it is urgent to develop catalysts with higher activity and stability, which requires a thorough understanding of the deactivation mechanism of DSA catalysts. This paper reviews existing references on the deactivation mechanisms of DSA catalysts, including both experimental and theoretical studies. Studies on how CER selectivity affects electrode stability are also discussed. Furthermore, studies on the effects of the preparation process, elemental composition, and surface/interface structures on the DSA stability and corresponding improvement strategies are summarized. The development of other non-DSA-type catalysts with comparable stability is also reviewed, and future opportunities in this exciting field are also outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O’Brien, T. F.; Bommaraju, T. V.; Hine, F. Handbook of Chlor-Alkali Technology; Springer: New York, 2005; pp 1–16.

    Book  Google Scholar 

  2. Schmittinger, P.; Florkiewicz, T.; Curlin, L.C.; Lüke, B.; Scannell, R.; Navin, T.; Zelfel, E.; Bartsch, R. Chlorine. In Ullmnnn’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2011.

    Google Scholar 

  3. Chlor-alkali industry review 2021–2022 [Online]. https://www.eurochlor.org/publication/chlor-alkali-industry-review-2021–2022/ (accessed Dec 1, 2022).

  4. Barmashenko, V.; Jörissen, J. Recovery of chlorine from dilute hydrochloric acid by electrolysis using a chlorine resistant anion exchange membrane. J. Appl. Electrochem. 2005, 35, 1311–1319.

    Article  CAS  Google Scholar 

  5. Eberil’, V. I.; Novikov, E. A.; Mazanko, A. F. Reasons for the DSA passivation during chlorate electrolysis and the means for extending the anode service life. Russ. J. Electrochem. 2001, 37, 1054–1058.

    Article  Google Scholar 

  6. Tilak, B. V.; Birss, V. I.; Wang, J.; Chen, C. P.; Rangarajan, S. K. Deactivation of thermally formed Ru/Ti oxide electrodes: An AC impedance characterization study. J. Electrochem. Soc. 2001, 148, D112–D120.

    Article  CAS  Google Scholar 

  7. Lakshmanan, S.; Murugesan, T. The chlor-alkali process: Work in progress. Clean Technol. Environ. Policy 2014, 16, 225–234.

    Article  CAS  Google Scholar 

  8. Cornell, A.; Håkansson, B.; Lindbergh, G. Ruthenium based DSA® in chlorate electrolysis—Critical anode potential and reaction kinetics. Electrochim. Acta 2003, 48, 473–481.

    Article  CAS  Google Scholar 

  9. Trasatti, S. Electrocatalysis: Understanding the success of DSA®. Electrochim. Acta 2000, 45, 2377–2385.

    Article  CAS  Google Scholar 

  10. Takasu, Y.; Sugimoto, W.; Nishiki, Y.; Nakamatsu, S. Structural analyses of RuO2-TiO2/Ti and IrO2-RuO2-TiO2/Ti anodes used in industrial chlor-alkali membrane processes. J. Appl. Electrochem. 2010, 40, 1789–1795.

    Article  CAS  Google Scholar 

  11. Llopis, J.; Vázquez, M. Passivation of ruthenium in hydrochloric acid solution. Electrochim. Acta 1966, 11, 633–640.

    Article  CAS  Google Scholar 

  12. Llopis, J.; Gamboa, J. M.; Alfayate, J. M. Radiochemical study of the anodic corrosion of ruthenium. Electrochim. Acta 1967, 12, 57–65.

    Article  CAS  Google Scholar 

  13. Loucka, T. The reasons for the loss of activity of titanium-ruthenium dioxide anodes in sulphuric acid media. J. Appl. Electrochem. 1981, 11, 143–144.

    Article  CAS  Google Scholar 

  14. Loučka, T. The potential-pH diagram for the Ru-H2O-Cl system at 25 °C. J. Appl. Electrochem. 1990, 20, 522–523.

    Article  Google Scholar 

  15. Guglielmi, M.; Colombo, P.; Rigato, V.; Battaglin, G.; Boscolo-Boscoletto, A.; DeBattisti, A. Compositional and microstructural characterization of RuO2-TiO2 catalysts synthesized by the sol-gel method. J. Electrochem. Soc. 1992, 139, 1655–1661.

    Article  ADS  CAS  Google Scholar 

  16. Vallet, H. C. Comparison of scanning probe microscopies with RBS and SEM/EDX for the analysis of RuO2, TiO2 composites. Appl. Phys. A 1997, 65, 387–394.

    Article  ADS  CAS  Google Scholar 

  17. Hine, F.; Yasuda, M.; Noda, T.; Yoshida, T.; Okuda, J. Electrochemical behavior of the oxide-coated metal anodes. J. Electrochem. Soc. 1979, 126, 1439–1445.

    Article  ADS  CAS  Google Scholar 

  18. Zeradjanin, A. R.; Menzel, N.; Schuhmann, W.; Strasser, P. On the faradaic selectivity and the role of surface inhomogeneity during the chlorine evolution reaction on ternary Ti-Ru-Ir mixed metal oxide electrocatalysts. Phys. Chem. Chem. Phys. 2014, 16, 13741–13747.

    Article  CAS  PubMed  Google Scholar 

  19. Karlsson, R. K. B.; Cornell, A. Selectivity between oxygen and chlorine evolution in the chlor-alkali and chlorate processes. Chem. Rev. 2016, 116, 2982–3028.

    Article  CAS  PubMed  Google Scholar 

  20. Hansen, H. A.; Man, I. C.; Studt, F.; Abild-Pedersen, F.; Bligaard, T.; Rossmeisl, J. Electrochemical chlorine evolution at rutile oxide(110) surfaces. Phys. Chem. Chem. Phys. 2010, 12, 283–290.

    Article  CAS  PubMed  Google Scholar 

  21. Lim, T.; Jung, G. Y.; Kim, J. H.; Park, S. O.; Park, J.; Kim, Y. T.; Kang, S. J.; Jeong, H. Y.; Kwak, S. K.; Joo, S. H. Atomically dispersed Pt-N4 sites as efficient and selective electrocatalysts for the chlorine evolution reaction. Nat. Commun. 2020, 11, 412.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  22. Cheng, W. T.; Liu, Y. L.; Wu, L.; Chen, R. S.; Wang, J. X.; Chang, S.; Ma, F.; Li, Y.; Ni, H. W. RuO2/IrO2 nanoparticles decorated TiO2 nanotube arrays for improved activity towards chlorine evolution reaction. Catal. Today 2022, 400–401, 26–34.

    Google Scholar 

  23. Lim, H. W.; Park, J. H.; Yan, B. Y.; Kim, J. Y.; Lee, C. W. Liquid-diffusion electrode with core–shell structured mixed metal oxide catalyst for near-zero polarization in chlor-alkali electrolysis. Appl. Catal. B Environ. 2023, 322, 122095–122107.

    Article  CAS  Google Scholar 

  24. Saha, S.; Kishor, K.; Pala, R. G. Modulating selectivity in CER and OER through doped RuO2. ECS Trans. 2018, 85, 201.

    Article  ADS  CAS  Google Scholar 

  25. Xiong, K.; Deng, Z. H.; Li, L.; Chen, S. G.; Xia, M. R.; Zhang, L.; Qi, X. Q.; Ding, W.; Tan, S. Y.; Wei, Z. D. Sn and Sb co-doped RuTi oxides supported on TiO2 nanotubes anode for selectivity toward electrocatalytic chlorine evolution. J. Appl. Electrochem. 2013, 43, 847–854.

    Article  CAS  Google Scholar 

  26. Wang, S. W.; Xu, H. L.; Yao, P. D.; Chen, X. M. Ti/RuO2-IrO2-SnO2-Sb2O5 anodes for Cl2 evolution from seawater. Electrochemistry 2012, 80, 507–511.

    Article  CAS  Google Scholar 

  27. Chen, S. Y.; Zheng, Y. H.; Wang, S. W.; Chen, X. M. Ti/RuO2-Sb2O5-SnO2 electrodes for chlorine evolution from seawater. Chem. Eng. J. 2011, 172, 47–51.

    Article  CAS  Google Scholar 

  28. Menzel, N.; Ortel, E.; Mette, K.; Kraehnert, R.; Strasser, P. Dimensionally stable Ru/Ir/TiO2-anodes with tailored mesoporosity for efficient electrochemical chlorine evolution. ACS Catal. 2013, 3, 1324–1333.

    Article  CAS  Google Scholar 

  29. Wang, Y. T.; Xue, Y. D.; Zhang, C. H. Rational surface and interfacial engineering of IrO2/TiO2 nanosheet arrays toward highperformance chlorine evolution electrocatalysis and practical environmental remediation. Small 2021, 17, 2006587.

    Article  CAS  Google Scholar 

  30. Xiong, K.; Peng, L. S.; Wang, Y.; Liu, L. H.; Deng, Z. H.; Li, L.; Wei, Z. D. In situ growth of RuO2-TiO2 catalyst with flower-like morphologies on the Ti substrate as a binder-free integrated anode for chlorine evolution. J. Appl. Electrochem. 2016, 46, 841–849.

    Article  CAS  Google Scholar 

  31. Jiang, M.; Wang, H.; Li, Y. J.; Zhang, H. C.; Zhang, G. X.; Lu, Z. Y.; Sun, X. M.; Jiang, L. Superaerophobic RuO2-based nanostructured electrode for high-performance chlorine evolution reaction. Small 2017, 13, 1602240.

    Article  Google Scholar 

  32. Lim, T.; Kim, J. H.; Kim, J.; Baek, D. S.; Shin, T. J.; Jeong, H. Y.; Lee, K. S.; Exner, K. S.; Joo, S. H. General efficacy of atomically dispersed Pt catalysts for the chlorine evolution reaction: Potential-dependent switching of the kinetics and mechanism. ACS Catal. 2021, 11, 12232–12246.

    Article  CAS  Google Scholar 

  33. Liu, Y. Y.; Li, C.; Tan, C. H.; Pei, Z. X.; Yang, T.; Zhang, S. Z.; Huang, Q. W.; Wang, Y. H.; Zhou, Z.; Liao, X. Z. et al. Electrosynthesis of chlorine from seawater-like solution through single-atom catalysts. Nat. Commun. 2023, 14, 2475.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhu, X. L.; Wang, P.; Wang, Z. Y.; Liu, Y. Y.; Zheng, Z. K.; Zhang, Q. Q.; Zhang, X. Y.; Dai, Y.; Whangbo, M. H.; Huang, B. B. Co3O4 nanobelt arrays assembled with ultrathin nanosheets as highly efficient and stable electrocatalysts for the chlorine evolution reaction. J. Mater. Chem. A 2018, 6, 12718–12723.

    Article  CAS  Google Scholar 

  35. Aromaa, J.; Forsén, O. Evaluation of the electrochemical activity of a Ti-RuO2-TiO2 permanent anode. Electrochim. Acta 2006, 51, 6104–6110.

    Article  CAS  Google Scholar 

  36. Goryachev, A.; Pascuzzi, M. E. C.; Carlà, F.; Weber, T.; Over, H.; Hensen, E. J. M.; Hofmann, J. P. Electrochemical stability of RuO2(110)/Ru(0001) model electrodes in the oxygen and chlorine evolution reactions. Electrochim. Acta 2020, 336, 135713.

    Article  CAS  Google Scholar 

  37. Chen, R. Y.; Trieu, V.; Schley, B.; Natter, H.; Kintrup, J.; Bulan, A.; Weber, R.; Hempelmann, R. Anodic electrocatalytic coatings for electrolytic chlorine production: A review. Z. Phys. Chem. 2013, 227, 651–666.

    Article  CAS  Google Scholar 

  38. Dong, H.; Yu, W. L.; Hoffmann, M. R. Mixed metal oxide electrodes and the chlorine evolution reaction. J. Phys. Chem. C 2021, 125, 20745–20761.

    Article  CAS  Google Scholar 

  39. Chen, R. Y.; Trieu, V.; Zeradjanin, A. R.; Natter, H.; Teschner, D.; Kintrup, J.; Bulan, A.; Schuhmann, W.; Hempelmann, R. Microstructural impact of anodic coatings on the electrochemical chlorine evolution reaction. Phys. Chem. Chem. Phys. 2012, 14, 7392–7399.

    Article  CAS  PubMed  Google Scholar 

  40. Moradi, F.; Dehghanian, C. Influence of heat treatment temperature on the electrochemical properties and corrosion behavior of RuO2-TiO2 coating in acidic chloride solution. Prot. Met. Phys. Chem. Surf. 2013, 49, 699–704.

    Article  CAS  Google Scholar 

  41. Mirseyed, S. F.; Jafarzadeh, K.; Rostamian, A.; Semnani, A.; Abbasi, H. M.; Ostadhassan, M. A novel approach to the role of iridium and titanium oxide in deactivation mechanisms of a Ti/(36RuO2-xIrO2-(64-x)TiO2) coating in sodium chloride solution. Corros. Sci. 2022, 206, 110481.

    Article  CAS  Google Scholar 

  42. Wang, Y. H.; Liu, Y. Y.; Wiley, D.; Zhao, S. L.; Tang, Z. Y. Recent advances in electrocatalytic chloride oxidation for chlorine gas production. J. Mater. Chem. A 2021, 9, 18974–18993.

    Article  CAS  Google Scholar 

  43. Košević, M.; Stopic, S.; Bulan, A.; Kintrup, J.; Weber, R.; Stevanović, J.; Panić, V.; Friedrich, B. A continuous process for the ultrasonic spray pyrolysis synthesis of RuO2/TiO2 particles and their application as a coating of activated titanium anode. Adv. Powder Technol. 2017, 28, 43–49.

    Article  Google Scholar 

  44. Hoseinieh, S. M.; Ashrafizadeh, F.; Maddahi, M. H. A comparative investigation of the corrosion behavior of RuO2-IrO2-TiO2 coated titanium anodes in chloride solutions. J. Electrochem. Soc. 2010, 157, E50.

    Article  CAS  Google Scholar 

  45. Le Luu, T.; Kim, J.; Yoon, J. Physicochemical properties of RuO2 and IrO2 electrodes affecting chlorine evolutions. J. Ind. Eng. Chem. 2015, 21, 400–404.

    Article  CAS  Google Scholar 

  46. Trasatti, S. Progress in the understanding of the mechanism of chlorine evolution at oxide electrodes. Electrochim. Acta 1987, 32, 369–382.

    Article  CAS  Google Scholar 

  47. Pourbaix, M.; Schmets, J.; Van Muylder, J. Atlas of electrochemical equilibria in aqueous solutions. NACE 1966, 10, 280–285.

    Google Scholar 

  48. Over, H. Atomic scale insights into electrochemical versus gas phase oxidation of HCl over RuO2-based catalysts: A comparative review. Electrochim. Acta 2013, 93, 314–333.

    Article  CAS  Google Scholar 

  49. Macounová, K.; Makarova, M.; Jirkovský, J.; Franc, J.; Krtil, P. Parallel oxygen and chlorine evolution on Ru1−xNixO2−y nanostructured electrodes. Electrochim. Acta 2008, 53, 6126–6134.

    Article  Google Scholar 

  50. Goudarzi, M.; Ghorbani, M. A study on ternary mixed oxide coatings containing Ti, Ru, Ir by sol-gel method on titanium. J. Sol-Gel Sci. Technol. 2015, 73, 332–340.

    Article  CAS  Google Scholar 

  51. Abbott, D. F.; Petrykin, V.; Okube, M.; Bastl, Z.; Mukerjee, S.; Krtil, P. Selective chlorine evolution catalysts based on Mg-doped nanoparticulate ruthenium dioxide. J. Electrochem. Soc. 2015, 162, H23–H31.

    Article  CAS  Google Scholar 

  52. Cherevko, S.; Reier, T.; Zeradjanin, A. R.; Pawolek, Z.; Strasser, P.; Mayrhofer, K. J. J. Stability of nanostructured iridium oxide electrocatalysts during oxygen evolution reaction in acidic environment. Electrochem. Commun. 2014, 48, 81–85.

    Article  CAS  Google Scholar 

  53. Zeradjanin, A. R.; Topalov, A. A.; Van Overmeere, Q.; Cherevko, S.; Chen, X. X.; Ventosa, E.; Schuhmann, W.; Mayrhofer, K. J. J. Rational design of the electrode morphology for oxygen evolution-enhancing the performance for catalytic water oxidation. RSC Adv. 2014, 4, 9579–9587.

    Article  ADS  CAS  Google Scholar 

  54. Gorodetskii, V.; Pecherskii, M.; Yanke, V.; Bune, N. Y.; Bussemachukas, V.; Kubasov, V.; Losev, V. Effect of acidity on the electrochemical and corrosion behavior of titanium-ruthenium oxide anodes in chloride solutions. Sov. Electrochem. 1981, 17, 421–425.

    Google Scholar 

  55. Kötz, R.; Stucki, S.; Scherson, D.; Kolb, D. M. In-situ identification of RuO4 as the corrosion product during oxygen evolution on ruthenium in acid media. J. Electroanal. Chem. Interfac. Electrochem. 1984, 172, 211–219.

    Article  Google Scholar 

  56. Exner, K. S. Controlling stability and selectivity in the competing chlorine and oxygen evolution reaction over transition metal oxide electrodes. ChemElectroChem 2019, 6, 3401–3409.

    Article  CAS  Google Scholar 

  57. Exner, K. S. Design criteria for the competing chlorine and oxygen evolution reactions: Avoid the OCl adsorbate to enhance chlorine selectivity. Phys. Chem. Chem. Phys. 2020, 22, 22451–22458.

    Article  CAS  PubMed  Google Scholar 

  58. Gaudet, J.; Tavares, A. C.; Trasatti, S.; Guay, D. Physicochemical characterization of mixed RuO2-SnO2 solid solutions. Chem. Mater. 2005, 17, 1570–1579.

    Article  CAS  Google Scholar 

  59. Chi, M. C.; Luo, B.; Zhang, Q. T.; Jiang, H. R.; Chen, C. Z.; Wang, S. F.; Min, D Y. Lignin-based monolithic carbon electrode decorating with RuO2 nanospheres for high-performance chlorine evolution reaction. Ind. Crops Prod. 2021, 159, 113088.

    Article  CAS  Google Scholar 

  60. Finke, C. E.; Omelchenko, S. T.; Jasper, J. T.; Lichterman, M. F.; Read, C. G.; Lewis, N. S.; Hoffmann, M. R. Enhancing the activity of oxygen-evolution and chlorine-evolution electrocatalysts by atomic layer deposition of TiO2. Energy Environ. Sci. 2019, 12, 358–365.

    Article  CAS  PubMed  Google Scholar 

  61. Petrykin, V.; Bastl, Z.; Franc, J.; Macounova, K.; Makarova, M.; Mukerjee, S.; Ramaswamy, N.; Spirovova, I.; Krtil, P. Local structure of nanocrystalline Ru1−xNixO2−x dioxide and its implications for electrocatalytic behavior—An XPS and XAS study. J. Phys. Chem. C 2009, 113, 21657–21666.

    Article  CAS  Google Scholar 

  62. Sood, K.; Rana, S.; Wadhwa, R.; Bhasin, K. K.; Jha, M. Mechanistic insights of electrochemical Cl2 and O2 generation from lanthanum cobalt manganese oxide. Adv. Mater. Interfaces 2022, 9, 2201138.

    Article  CAS  Google Scholar 

  63. Moreno-Hernandez, I. A.; Brunschwig, B. S.; Lewis, N. S. Crystalline nickel, cobalt, and manganese antimonates as electrocatalysts for the chlorine evolution reaction. Energy Environ. Sci. 2019, 12, 1241–1248.

    Article  CAS  Google Scholar 

  64. Huang, J. H.; Hou, M. J.; Wang, J. Y.; Teng, X.; Niu, Y. L.; Xu, M. Z.; Chen, Z. F. RuO2 nanoparticles decorate belt-like anatase TiO2 for highly efficient chlorine evolution. Electrochim. Acta 2020, 339, 135878.

    Article  CAS  Google Scholar 

  65. Roginskaya, Y. E.; Belova, I. D.; Galyamov, B. S.; Chibirova, F. K.; Shiprina, R. R. On the character of solid solutions in ruthenium-titanium oxide anodes. Mater. Chem. Phys. 1989, 22, 203–229.

    Article  CAS  Google Scholar 

  66. Panić, V.; Dekanski, A.; Mišković-Stanković, V. B.; Milonjić, S.; Nikolić, B. On the deactivation mechanism of RuO2-TiO2/Ti anodes prepared by the sol-gel procedure. J. Electroanal. Chem. 2005, 579, 67–76.

    Article  Google Scholar 

  67. Royaei, N.; Shahrabi, T.; Yaghoubinezhad, Y. The investigation of the electrocatalytic and corrosion behavior of a TiO2-RuO2 anode modified by graphene oxide and reduced graphene oxide nanosheets via a sol-gel method. Catal. Sci. Technol. 2018, 8, 4957–4974.

    Article  CAS  Google Scholar 

  68. Ferro, S.; De Battisti, A.; Duo, I.; Comninellis, C.; Haenni, W.; Perret, A. Chlorine evolution at highly boron-doped diamond electrodes. J. Electrochem. Soc. 2000, 147, 2614–2619.

    Article  ADS  CAS  Google Scholar 

  69. Mirzaei Alavijeh, M.; Habibzadeh, S.; Roohi, K.; Keivanimehr, F.; Naji, L.; Ganjali, M. R. A selective and efficient precious metal-free electrocatalyst for chlorine evolution reaction: An experimental and computational study. Chem. Eng. J. 2021, 421, 127785.

    Article  CAS  Google Scholar 

  70. Yang, J. R.; Li, W. H.; Tang, H. T.; Pan, Y. M.; Wang, D. S.; Li, Y. D. CO2-mediated organocatalytic chlorine evolution under industrial conditions. Nature 2023, 617, 519–523.

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the Experimental Center of Advanced Materials at the Beijing Institute of Technology. Financial support was provided by the startup fund from the College of Chemistry and Molecular Engineering, Peking University and Beijing National Laboratory for Molecular Sciences (BNLMS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mufan Li or Zipeng Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Z., Xu, S., Liu, C. et al. Stability of dimensionally stable anode for chlorine evolution reaction. Nano Res. 17, 949–959 (2024). https://doi.org/10.1007/s12274-023-5965-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5965-7

Keywords

Navigation