Skip to main content
Log in

Simulation of Mass, Linear Momentum, and Energy Transport in Concrete with Varying Moisture Content during Cooling to Cryogenic Temperatures

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

A set of governing equations comprising linear momentum, mass, and heat transfer is presented for thermoelastic freezing of a porous material. The theory of unsaturated freezing porous media is introduced to model deformation of concrete, a traditional building material, whose pore network is pressurized by the wet air, frozen ice, and unfrozen water. A general solution scheme is provided for the appropriate boundary conditions pertaining to the primary concrete containment in a liquefied natural gas tank, and simulated results are analyzed for fully and partially saturated non-air-entrained concrete and fully saturated air-entrained concrete. Effect of cooling rate is also demonstrated. It is found that high cooling rate results in high expansion provoked by high hydraulic pore pressure and the corresponding suppression of pore liquid freezing temperature. It is also revealed that air-entrained concrete, by allowing quick dissipation of the displaced pore water and accommodating the ensuing ice formation, shows less contraction and subsequently less crack initiating stresses than the high-porosity, non-air-entrained concrete. Similar outcomes are observed near the concrete surfaces subjected to evaporation prior to cryogenic freezing. High hydraulic pressure, induced by the delayed dissipation of excess pore water, is likely to generate at the center of surface-dried concrete walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. We choose melting temperature as the reference temperature and do not consider thermal strain due to cooling from ambient temperature to the melting temperature.

  2. The gas pressure, \(p_{G} \), is generally much smaller than the liquid and crystal pressures, but is included for completeness.

  3. Here, we have presumed that the pressure exerted by the LNG on the inner side of the tank is negligible. Depending on the depth of the LNG in the tank, this presumption may only apply nearer to the top of the tank.

  4. We assume that equilibrium is achieved instantly everywhere in the unsaturated strips of Fig. 6.

References

  • Baroghel-Bouny, V., Mainguy, M., Lassabatere, T., Coussy, O.: Characterization and identification of equilibrium and transfer moisture properties for ordinary and high-performance cementitious materials. Cem. Concr. Res. 29(8), 1225–1238 (1999). doi:10.1016/S0008-8846(99)00102-7

    Article  Google Scholar 

  • Beaudoin, J.J., MacInnis, C.: The mechanism of frost damage in hardened cement paste. Cem. Concr. Res. 4(2), 139–147 (1974)

    Article  Google Scholar 

  • Berryman, J., Blair, S.: Kozeny–Carman relations and image processing methods for estimating Darcy’s constant. J. Appl. Phys. 62(6), 2221–2228 (1987)

    Article  Google Scholar 

  • Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J. Acoust. Soc. Am. 28(2), 168–178 (1956). doi:10.1121/1.1908239

    Article  Google Scholar 

  • Brun, M., Lallemand, A., Quinson, J.-F., Eyraud, C.: A new method for the simultaneous determination of the size and shape of pores: the thermoporometry. Thermochim. Acta 21(1), 59–88 (1977). doi:10.1016/0040-6031(77)85122-8

    Article  Google Scholar 

  • Cahn, J.W., Dash, J.G., Haiying, F.: Theory of ice premelting in monosized powders. J. Cryst. Growth 123, 101–108 (1992)

    Article  Google Scholar 

  • Carman, P.C.: Fluid flow through granular beds. Trans. Inst. Chem. Eng. 15, 150–166 (1937). doi:10.1016/S0263-8762(97)80003-2

    Google Scholar 

  • Chiu, T.-F., Shackelford, C.: Unsaturated hydraulic conductivity of compacted sand-kaolin mixtures. J. Geotech. Geoenviron. Eng. 124(2), 160–170 (1998)

    Article  Google Scholar 

  • Corres, H., Elices, M., Planas, J.: Thermal deformation of loaded concrete at low temperatures. 3: lightweight concrete. Cem. Concr. Compos. 16, 845–852 (1986)

    Article  Google Scholar 

  • Coussy, O.: Poromechanics. Wiley, West Sussex (2004)

    Google Scholar 

  • Coussy, O.: Poromechanics of freezing materials. J. Mech. Phys. Solids 53(8), 1689–1718 (2005)

    Article  Google Scholar 

  • Coussy, O.: Deformation and stress from in-pore drying-induced crystallization of salt. J. Mech. Phys. Solids 54(8), 1517–1547 (2006). doi:10.1016/j.jmps.2006.03.002

    Article  Google Scholar 

  • Coussy, O.: Mechanics and Physics of Porous Solids. Wiley, West Sussex (2010)

    Book  Google Scholar 

  • Coussy, O., Monteiro, P.: Unsaturated poroelasticity for crystallization in pores. Comput. Geotech. 34(4), 279–290 (2007)

    Article  Google Scholar 

  • Coussy, O., Monteiro, P.J.M.: Poroelastic model for concrete exposed to freezing temperatures. Cem. Concr. Res. 38(1), 40–48 (2008). doi:10.1016/j.cemconres.2007.06.006

    Article  Google Scholar 

  • Couture, F., Jomaa, W., Puiggali, J.R.: Relative permeability relations: a key factor for a drying model. Transp. Porous Med. 23(3), 303–335 (1996). doi:10.1007/BF00167101

    Google Scholar 

  • Crank, J., Nicolson, P.: A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Adv. Comput. Math. 6(1), 207–226 (1996). doi:10.1007/bf02127704

    Article  Google Scholar 

  • Dash, J., Rempel, A., Wettlaufer, J.: The physics of premelted ice and its geophysical consequences. Rev. Mod. Phys. 78(3), 695–741 (2006). doi:10.1103/RevModPhys.78.695

    Article  Google Scholar 

  • Dormieux, L., Molinari, A., Kondo, D.: Micromechanical approach to the behavior of poroelastic materials. J. Mech. Phys. Solids 50(10), 2203–2231 (2002). doi:10.1016/S0022-5096(02)00008-X

    Article  Google Scholar 

  • Elices, M., Planas, J., Corres, H.: Thermal deformation of loaded concrete at low temperatures, 2: transverse deformation. Cem. Concr. Res. 16, 741–748 (1986)

    Article  Google Scholar 

  • Fen-Chong, T., Fabbri, A., Thiery, M., Dangla, P.: Poroelastic analysis of partial freezing in cohesive porous materials. J. Appl. Mech. 80(2), 020910–020910 (2013). doi:10.1115/1.4007908

    Article  Google Scholar 

  • Hjorteset, K., Wernli, M., Lanier, M.W., Hoyle, K.A., Oliver, W.H.: Development of large-scale precast, prestressed concrete liquefied natural gas storage tanks. Precast Prestress. Concr. Inst. 58(4), 40–54 (2013)

    Google Scholar 

  • Hoyle, K., Oliver, S., Tsai, N., Hjorteset, K., LaNier, M., Wernli, M.: Composite concrete cryogenic tank (C3T): a precast concrete alternative for LNG storage. In: The 17th International Conference & Exhibition on Liquefied Natural Gas, Houston, TX, pp. 1–19 (2013)

  • Ippisch, O., Vogel, H.J., Bastian, P.: Validity limits for the van Genuchten–Mualem model and implications for parameter estimation and numerical simulation. Adv. Water Resour. 29(12), 1780–1789 (2006). doi:10.1016/j.advwatres.2005.12.011

    Article  Google Scholar 

  • Johannesson, B.: Dimensional and ice content changes of hardened concrete at different freezing and thawing temperatures. Cem. Concr. Compos. 32(1), 73–83 (2010)

    Article  Google Scholar 

  • Kaneuji, M., Winslow, D.N., Dolch, W.L.: The relationship between an aggregate’s pore size distribution and its freeze thaw in concrete. Cem. Concr. Compos. 10, 433–441 (1980)

    Article  Google Scholar 

  • Kogbara, R.B., Iyengar, S.R., Grasley, Z.C., Masad, E.A., Zollinger, D.G.: A review of concrete properties at cryogenic temperatures: towards direct LNG containment. Constr. Build. Mater. 47, 760–770 (2013). doi:10.1016/j.conbuildmat.2013.04.025

  • Kogbara, R.B., Iyengar, S.R., Grasley, Z.C., Rahman, S., Masad, E.A., Zollinger, D.G.: Relating damage evolution of concrete cooled to cryogenic temperatures to permeability. Cryogenics 64, 21–28 (2014). doi:10.1016/j.cryogenics.2014.09.001

    Article  Google Scholar 

  • Korb, J.P., McDonald, P.J., Monteilhet, L., Kalinichev, A.G., Kirkpatrick, R.J.: Comparison of proton field-cycling relaxometry and molecular dynamics simulations for proton-water surface dynamics in cement-based materials. Cem. Concr. Res. 37(3), 348–350 (2007). doi:10.1016/j.cemconres.2006.02.009

    Article  Google Scholar 

  • Kralj, B., Pande, G.N.: A stochastic model for the permeability characteristics of saturated cemented porous media undergoing freezing. Transp. Porous Med. 22(3), 345–357 (1996). doi:10.1007/BF00161631

    Article  Google Scholar 

  • Krstulovic-Opara, N.: Liquefied natural gas storage: material behavior of concrete at cryogenic temperatures. ACI Mater. J. 104(3), 297–306 (2007)

    Google Scholar 

  • Litvan, G.G.: The mechanism of frost action in concrete-theory and practical implications. In: Proceedings of Workshop on Low Temperature Effects on Concrete, Sapporo, Hakkaido, Japan, pp. 115–134. National Research Council Canada (1988)

  • Luckner, L., van Genuchten, M.T., Nielsen, D.R.: A consistent set of parametric models for the two-phase flow of immiscible fluids in the subsurface. Water Resour. Res. 25(10), 2187–2193 (1989)

    Article  Google Scholar 

  • Marshall, A.L.: Cryogenic concrete. Cryogenics 22(11), 555–565 (1982)

    Article  Google Scholar 

  • Marshall, T.J.: A relation between permeability and size distribution of pores. J. Soil Sci. 9(1), 1–8 (1958)

    Article  Google Scholar 

  • McTigue, D.F.: Thermoelastic response of fluid-saturated porous rock. J. Geophys. Res. 91(B9), 9533–9542 (1986)

    Article  Google Scholar 

  • Miura, T.: Properties of concrete at very low temperatures. Mater. Struct. 22(130), 243–254 (1989)

    Article  Google Scholar 

  • Mualem, Y.: A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12(3), 513–522 (1976)

    Article  Google Scholar 

  • Pigeon, M., Marchand, J., Pleau, R.: Frost resistant concrete. Constr. Build. Mater. 10(5), 339–348 (1996). doi:10.1016/0950-0618(95)00067-4

    Article  Google Scholar 

  • Planas, J., Corres, H., Elices, M., Chueca, R.: Thermal deformation of loaded concrete during thermal cycles from \(20 \,^{\circ }\text{ C }\) to \(-165 \,^{\circ }\text{ C }\). Cem. Concr. Res. 14, 639–644 (1984)

    Article  Google Scholar 

  • Powers, T.C., Willis, T.F.: The Air Requirement of Frost-Resistant Concrete. Portland Cement Association, Chicago (1949)

    Google Scholar 

  • Powers, T.C., Helmuth, R.A.: Theory of Volume Changes in Hardened Portland Cement Paste During Freezing. Portland Cement Association, Skokie (1953)

    Google Scholar 

  • Rahman, S., Grasley, Z.: A poromechanical model of freezing concrete to elucidate damage mechanisms associated with substandard aggregates. Cem. Concr. Res. 55, 88–101 (2014). doi:10.1016/j.cemconres.2013.10.001

    Article  Google Scholar 

  • Rempel, A.W., Wettlaufer, J.S., Worster, M.G.: Premelting dynamics in a continuum model of frost heave. J. Fluid Mech. 498, 227–244 (2004). doi:10.1017/S0022112003006761

    Article  Google Scholar 

  • Rostásy, F.S., Pusch, U.: Strength and deformation of lightweight concrete of variable moisture content at very low temperatures. Int. J. Cem. Compos. Lightweight Concr. 9(1), 3–17 (1987). doi:10.1016/0262-5075(87)90033-9

    Article  Google Scholar 

  • Rostásy, F.S., Schneider, U., Wiedemann, G.: Behaviour of mortar and concrete at extremely low temperatures. Cem. Concr. Res. 9(3), 365–376 (1979). doi:10.1016/0008-8846(79)90129-7

    Article  Google Scholar 

  • Scherer, G.W.: Freezing gels. J. Non-Cryst. Solids 155(1), 1–25 (1993). doi:10.1016/0022-3093(93)90467-c

    Article  Google Scholar 

  • Scherer, G.W.: Crystallization in Pores. Cem. Concr. Res. 29(8), 1347–1358 (1999). doi:10.1016/S0008-8846(99)00002-2

    Article  Google Scholar 

  • Scherer, G.W., Valenza, J.J.: Mechanisms of frost damage. Mater. Sci. Concr. 7, 209–246 (2005)

    Google Scholar 

  • Setzer, M.J.: Einfluss des Wassergehaltes auf die Eigenschaften des erharteten Betons. Deutscher Ausschuss fur Stahlbeton 280, 103–103 (1977)

    Google Scholar 

  • Sun, Z., Scherer, G.W.: Effect of air voids on salt scaling and internal freezing. Cem. Concr. Res. 40(2), 260–270 (2010). doi:10.1016/j.cemconres.2009.09.027

    Article  Google Scholar 

  • Tognon, G.: Behaviour of mortars and concrete in the temperature range from \(+20 \,^{\circ }\text{ C }\) to \(-196 \,^{\circ }\text{ C }\). Paper presented at the Fifth International Symposium on the Chemistry of Cement, Tokyo (1968)

  • Ven der Veen, C.: Properties of concrete at very low temperatures: a survey of the literature. In: Delft University of Technology (1987)

  • Ven der Veen, C.: Theoretical and experimental determination of the crack width in reinforced concrete at very low temperatures. In: Delft University of Technology (1990)

  • Valdes-Parada, F.J., Ochoa-Tapia, J.A., Alvarez-Ramirez, J.: Validity of the permeability Carman–Kozeny equation: a volume averaging approach. Phys. A 388(6), 789–798 (2009). doi:10.1016/j.physa.2008.11.024

    Article  Google Scholar 

  • van Genuchten, M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44(5), 892–898 (1980). doi:10.2136/sssaj1980.03615995004400050002x

    Article  Google Scholar 

  • Verbeck, G., Landgren, R.: Influence of physical characteristics of aggregates on frost resistance of concrete. In: Proceedings of American Society for Testing Materials, Conshohocken, Philadelphis, pp. 1063–1079. American Society for Testing and Materials (1960)

  • Vogel, T., Cislerova, M.: On the reliability of unsaturated hydraulic conductivity calculated from the moisture retention curve. Transp. Porous Media 3(1), 1–15 (1988). doi:10.1007/BF00222683

    Article  Google Scholar 

  • Wettlaufer, J., Worster, M.: Dynamics of premelted films: frost heave in a capillary. Phys. Rev. E 51(5), 4679–4689 (1995). doi:10.1103/PhysRevE.51.4679

    Article  Google Scholar 

  • Wiedemann, G.: Zum Einfluss tiefer Temperaturen auf Festigkeit und Verformung von Beton. Institut für Baustoffe, Massivbau und Brandschutz der Technischen Universität, Braunschweig (1982)

    Google Scholar 

  • Xu, S., Simmons, G.C., Mahadevan, T.S., Scherer, G.W., Garofalini, S.H., Pacheco, C.: Transport of water in small pores. Langmuir 25(9), 5084–5090 (2009). doi:10.1021/la804062e

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Qatar National Research Fund (QNRF—a member of The Qatar Foundation) through NPRP 4 - 410 - 2 - 156. Any opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the QNRF; QNRF has not approved or endorsed its content. The authors are particularly indebted to Kåre Hjorteset for providing valuable information about the concrete composite cryogenic tank structural design and insulation detail. Thanks to the reviewers and editor for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zachary Grasley.

Appendix

Appendix

1.1 Thermodynamics of Partially Saturated Freezing Concrete

The theory presented here is an application of the model proposed by Coussy (2006) for isothermal drying induced crystallization, allowing for the thermal expansion induced by the temperature change. Let us consider a porous material whose pore space is occupied by three phases: a gas referred to by index \(J = G\), a liquid referred to by index \(J = L\), and a solid crystal referred to by index \(J = C\). If \(\hbox {d}V_0 \) is the initial volume of an infinitesimal representative element from the porous solid, \(\phi _0 \) and \(\phi \) are the initial and current porosity, respectively, and the reference porous volume of the element is given by \(\phi _0 \hbox {d}V_0 \) and the current porous volume is \(\phi \hbox {d}V_0 \). The porous solid and any of its phases are capable of exhibiting infinitesimal deformation gradients. Furthermore, \(\phi _J \) if the current volume occupied by the phase J, the current overall porosity, \(\phi \) can be written as

$$\begin{aligned} \phi = \phi _C + \phi _G + \phi _L \end{aligned}$$
(45)

If the current number of moles of phase J per unit initial volume is \(n_J \), temperature T, the current molar entropy is \(s_J \), and the current molar chemical potential \(\mu _J \), the Gibbs–Duhem equality for each phase J can be written in the form

$$\begin{aligned} \phi _J \hbox {d}p_J - n_J s_J \hbox {d}T - n_J \hbox {d}\mu _J = 0 \end{aligned}$$
(46)

such that

$$\begin{aligned} \begin{array}{l} \phi _G \hbox {d}p_G = n_a s_a \hbox {d}T + n_a \hbox {d}\mu _a + n_v s_v \hbox {d}T + n_v \hbox {d}\mu _v, \\ \phi _C \hbox {d}p_{C} = n_C s_C \hbox {d}T + n_C \hbox {d}\mu _C,\hbox { and} \\ \phi _L \hbox {d}p_{L} = n_L s_L \hbox {d}T + n_L \hbox {d}\mu _L. \\ \end{array} \end{aligned}$$
(47)

When no dissipation occurs, the first and second laws of thermodynamics combine to provide a Clausius–Duhem equality (for equilibrium) for a poroelastic material as given by

$$\begin{aligned} \sigma _{ij} \hbox {d}\varepsilon _{ij} + \mu _C \hbox {d}n_C + \mu _a \hbox {d}n_a + \mu _v \hbox {d}n_v + \mu _L \hbox {d}n_L - \Sigma \hbox {d}T - \hbox {d}F = 0, \end{aligned}$$
(48)

where \(\sigma _{ij} \) is the current overall stress components, \(\varepsilon _{ij} \) is the current overall strain component, \(\Sigma \) is the entropy of the open element per unit of its initial volume, and F is the overall Helmholtz free energy. Subscripts a and v represent air and vapor, respectively.

Let \(F_{sk} \) and \(\Sigma _{sk}\) be the Helmholtz free energy and entropy per unit initial volume of the skeleton. The term skeleton includes interfaces between the solid matrix and the phases present in the pore network and excludes the bulk phases in the pores. Due to the additive characteristics of free energy, \(F_{sk}\) and \(\Sigma _{sk} \) can be written as

$$\begin{aligned} \begin{array}{l} \Sigma _{sk} = \Sigma - n_C s_C - n_a s_a - n_v s_v - n_L s_L \hbox { and} \\ F_{sk} = F-\left( {n_C s_C - \phi _C p_{C} + n_v s_v + n_a s_a - \phi _G p_G + n_L s_L - \phi _L p_{L} } \right) . \\ \end{array} \end{aligned}$$
(49)

With the help of (48), (49) gives us the free energy balance related to the poroelastic skeleton as

$$\begin{aligned} \sigma _{ij} \hbox {d}\varepsilon _{ij} + p_{C} \hbox {d}\phi _C + p_G \hbox {d}\phi _G + p_{L} \hbox {d}\phi _L - \Sigma _{sk} \hbox {d}T - \hbox {d}F_{sk} = 0. \end{aligned}$$
(50)

Therefore, the unsaturated poroelastic state equations can be written as

$$\begin{aligned} \begin{array}{l} F_{sk} = F_{sk} \left( {\varepsilon _{ij}, \phi _J, T} \right) , \\ \sigma _{ij} = \frac{\partial F_{sk} }{\partial \varepsilon _{ij} }, \\ p_J = \frac{\partial F_{sk} }{\partial \phi _J },\hbox { and} \\ \Sigma _{sk} = - \frac{\partial F_{sk} }{\partial T}. \\ \end{array} \end{aligned}$$
(51)

Change in partial porosities \(\phi _J \) results from the change in saturation, \(S_J \) and skeletal deformation, \(\phi _J \) resulting from the action of pressure on phases, \(p_J \). Therefore, \(\phi _J \) can be given in the form

$$\begin{aligned} \phi _J = \phi _0 S_J + \phi _J \end{aligned}$$
(52)

with the constraint

$$\begin{aligned} S_C + S_G + S_L = 1. \end{aligned}$$
(53)

Therefore, the current overall porosity is

$$\begin{aligned} \phi = \phi _0 + \phi _C + \phi _G + \phi _L. \end{aligned}$$
(54)

State equations (51) account for both the energy required for skeletal deformation and energy required to create new interfaces. Using (52) with (51), these two energy variables are separated as

$$\begin{aligned} F_{sk} \left( {\varepsilon _{ij}, \phi _J, T} \right) = \psi _{sk} \left( {\varepsilon _{ij}, \phi _J, S_C, S_G, T} \right) . \end{aligned}$$
(55)

Substituting (52) and (55) into (50) and applying the constraint (53), we find

$$\begin{aligned} \begin{array}{l} \sigma _{ij} \hbox {d}\varepsilon _{ij} + p_{C} \hbox {d}\phi _C + p_G \hbox {d}\phi _G + p_{L} \hbox {d}\phi _L \\ \quad +\,\phi _0 \left( {p_{C} - p_{L} } \right) \hbox {d}S_C + \phi _0 \left( {p_G - p_{L} } \right) \hbox {d}S_G - \Sigma _{sk} \hbox {d}T - \hbox {d}\psi _{sk} = 0 \\ \end{array}, \end{aligned}$$
(56)

which leads to the following equations

$$\begin{aligned}&\sigma _{ij} = \frac{\partial \psi _{sk} }{\partial \varepsilon _{ij} },\nonumber \\&p_J = \frac{\partial \psi _{sk} }{\partial \phi _J },\nonumber \\&\phi _0 \left( {p_{C} - p_{L} } \right) = \frac{\partial \psi _{sk} }{\partial S_C },\nonumber \\&\phi _0 \left( {p_G - p_{L} } \right) = \frac{\partial \psi _{sk} }{\partial S_G },\quad \hbox { and}\nonumber \\&\Sigma _{sk} = -\frac{\partial \psi _{sk} }{\partial T}. \end{aligned}$$
(57)

\(F_{sk} \) can be divided into two parts: elastic free energy, W of the porous solid excluding the interfaces, and the interface energy, U per unit of initial porous volume \(\phi _0 \hbox {d}V_0 \). Assuming that U does not significantly vary with the skeletal deformation for constant saturation \(S_{J}\), we find

$$\begin{aligned} \psi _{sk} = p_0 \phi + W\left( {\varepsilon _{ij}, \phi _J, S_C, S_G, T} \right) + \phi _0 U\left( { S_C, S_G } \right) . \end{aligned}$$
(58)

Substituting (58) into state Eq. (57), we obtain

$$\begin{aligned} \begin{array}{l} \sigma _{ij} = \frac{\partial W}{\partial \varepsilon _{ij} }, \\ p_J - p_0 = \frac{\partial W}{\partial \phi _J }, \\ \phi _0 \left( {p_{C} - p_{L} } \right) = \frac{\partial W}{\partial S_C } + \phi _0 \frac{\partial U}{\partial S_C }, \\ \phi _0 \left( {p_G - p_{L} } \right) = \frac{\partial W}{\partial S_G } + \phi _0 \frac{\partial U}{\partial S_G },\hbox { and} \\ \Sigma _{sk} = -\frac{\partial W}{\partial T}. \\ \end{array} \end{aligned}$$
(59)

Introducing the Legendre–Fenchel transform \(W^{*}\) of W with respect to \(\phi _J \) such that

$$\begin{aligned} W^{*} = W - \sum _{J=C,G,L} {\left( {p_J - p_0 } \right) } \phi _J, \end{aligned}$$
(60)

results in

$$\begin{aligned} \begin{array}{l} \sigma _{ij} = \frac{\partial W^{*}}{\partial \varepsilon _{ij} }, \\ \phi _J = - \frac{\partial W^{*}}{\partial \left( {p_J - p_0 } \right) },\hbox { and} \\ \Sigma _{sk} = -\frac{\partial W^{*}}{\partial T}. \\ \end{array} \end{aligned}$$
(61)

Equation (61) are the generalized state equations of unsaturated thermoporoelasticity. For a linear, isotropic thermoporoelastic material

$$\begin{aligned} \sigma _{ij}= & {} \left( {K-\frac{2 G}{3}} \right) \varepsilon _{kk} \delta _{ij} + 2 G \varepsilon _{ij} -3 \alpha _s K \left( {T - T_0 } \right) \delta _{ij}\nonumber \\&-\, b_C \left( {p_{C} - p_0 } \right) \delta _{ij} - b_L \left( {p_{L} - p_0 } \right) \delta _{ij} - b_G \left( {p_G - p_0 } \right) \delta _{ij} \end{aligned}$$
(62)

and

$$\begin{aligned} \begin{array}{l} \varphi _C = b_C \varepsilon _{kk} + \frac{p_{C} - p_0 }{N_{CC} } + \frac{p_G - p_0 }{N_{CG} } + \frac{p_{L} - p_0 }{N_{CL} } - 3 a_C \left( {T - T_0 } \right) , \\ \varphi _G = b_G \varepsilon _{kk} + \frac{p_{C} - p_0 }{N_{GC} } + \frac{p_G - p_0 }{N_{GG} } + \frac{p_{L} - p_0 }{N_{GL} } - 3 a_G \left( {T - T_0 } \right) ,\hbox { and} \\ \varphi _L = b_L \varepsilon _{kk} + \frac{p_{C} - p_0 }{N_{LC} } + \frac{p_G - p_0 }{N_{LG} } + \frac{p_{L} - p_0 }{N_{LL} } - 3 a_L \left( {T - T_0 } \right) . \\ \end{array} \end{aligned}$$
(63)

Here, \(a_J \) is the linear coefficient of thermal expansion of the pore volume occupied by the phase J, and \(N_{JK} \) is the generalized Biot coupling moduli, with \(N_{JK} = N_{KJ} \) owing to the Maxwell’s symmetry relations, such that,

$$\begin{aligned}&\displaystyle \sum _{K=C,G,L} {\frac{1}{N_{JK} }} = \frac{b_J - \phi _0 S_J }{K_s }\hbox {,}\quad \hbox {and} \end{aligned}$$
(64)
$$\begin{aligned}&\displaystyle b = b_C + b_{G } + b_{L } = 1- \frac{K}{K_s }. \end{aligned}$$
(65)

Here a link between the macroscopic and the microscopic properties needs to be established to determine \(b_J \) separately. This link can be set based on the microporomechanics considerations presented by (Dormieux et al. 2002) and applied by (Coussy 2006). At any stage of the freezing process, the gaseous phase and the ice crystals occupy the largest pores, and the remaining smaller pores are still filled up by the liquid water, and the crystal- and gas-filled pores can presumably act roughly the same as if they were enclosed in a porous body whose pore network was only constituted of liquid filled pores. Accordingly,

$$\begin{aligned} b_C + b_{G } = 1- \frac{K}{{K}'_s }, \end{aligned}$$
(66)

where \({K}'\) is the bulk modulus of the newly defined porous body such that,

$$\begin{aligned} {K}'_s = \frac{4 G_s K_s \left( {1-{\phi }'_0 } \right) }{3 {\phi }'_0 K_s + 4 G_s }. \end{aligned}$$
(67)

The matrix bulk and shear moduli, \(K_s \)and \(G_s \), are intrinsic properties and do not depend on the properties of the pore network. The porosity \({\phi }'_0 \) of this porous solid is given by

$$\begin{aligned} {\phi }'_0 = \frac{\phi _0 S_L }{1 - \phi _0 \left( {S_C + S_G } \right) }. \end{aligned}$$
(68)

Similarly, since the largest pores are occupied by the gas only, and the remaining smaller pores are filled with ice crystals and liquid water, it is therefore reasonable to assume that the wet air-filled pores are embedded in a porous matrix whose porous volume includes both the liquid filled pores and the ice filled pores. Accordingly, analogous to (66)–(68),

$$\begin{aligned} b_{G } = 1- \frac{K}{{K}''_s }, \end{aligned}$$
(69)

where

$$\begin{aligned} {K}''_s = \frac{4 G_s K_s \left( {1-{\phi }''_0 } \right) }{3 {\phi }''_0 K_s + 4 G_s } \end{aligned}$$
(70)

and

$$\begin{aligned} {\phi }''_0 = \frac{\phi _0 \left( {S_C + S_L } \right) }{1 - \phi _0 S_G }. \end{aligned}$$
(71)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, S., Grasley, Z., Masad, E. et al. Simulation of Mass, Linear Momentum, and Energy Transport in Concrete with Varying Moisture Content during Cooling to Cryogenic Temperatures. Transp Porous Med 112, 139–166 (2016). https://doi.org/10.1007/s11242-016-0636-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-016-0636-8

Keywords

Navigation