Skip to main content
Log in

Interfacial Mass Transport in Porous Media Augmented with Bulk Reactions: Analytical and Numerical Solutions

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The focus of this work is on the rate of interfacial mass transfer at the interface between two immiscible fluids in porous media, subjected to variations in velocity and first-order consumption in the bulk medium. Numerical and analytical solutions are presented. We quantify the entrance length scale, which is the typical length in the flow direction over which the local and equilibrium Sherwood numbers (\(Sh\)) become identical, for Darcy–Brinkman flows in the presence of first-order bulk reactions (presented by Damköhler (\(Da\)) number). The study considers the effect of Schmidt number (\(Sc\)), viscosity ratios, permeability and bulk reaction coefficients. Results suggest a closed form solution for the entrance length scale. It is also observed that the assumption of equilibrium conditions prior to approaching this length may be violated for lower bulk reaction rates. Numerical and analytical results are in good agreement and suggest limited dependency of equilibrium \(Sh\) and \(Da\), as \(Da\) diminishes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\(\alpha \) :

Parameter defined in [38]

\(\beta \) :

Parameter defined in [38]

\(\delta _\mathrm{{m}}\) :

Mass transfer length scale

\(\delta _\mathrm{{v}}\) :

Velocity length scale

\(\epsilon \) :

Porosity

\(\eta \) :

Parameter defined in [1]

\(\gamma _{1,2}\) :

Parameters defined in [55]

\(\hat{c}\) :

Changed concentration in [31]

\(\iota _{1,2}\) :

Parameters defined in [59, 60]

\(\lambda \) :

Parameter defined in [36]

\(\left\langle \ell \right\rangle \) :

Crosswise averaging operator for \(\ell \)

\(\mu _\alpha \) :

Viscosity

\(\nu _\alpha \) :

Kinematic viscosity

\(\overline{\ell }\) :

Equivalent value for \(\ell \) in normalized coordinate

\(\phi \) :

Parameter defined in [13]

\(\rho \) :

Density

\(\mathtt e \) :

Relative error

\(\theta \) :

Inclination angle

\(\tilde{\ell }\) :

Approximating operator for \(\ell \)

\(c\) :

Dissolved concentration

\(C_{1-\alpha }\) :

Homogeneous solution coefficient

\(C_{2-\alpha }\) :

Homogeneous solution coefficient

\(c_\mathrm{{{eq}}}\) :

Dissolved equilibrium concentration

\(D\) :

Effective diffusion coefficient

\(Da\) :

Damköhler number

\(f_\alpha \) :

Body force

\(g\) :

Gravitational acceleration

\(h_\alpha \) :

Thickness of fluid

\(J\) :

Mass flux

\(k\) :

Permeability

\(k_\mathrm{{b}}\) :

Bulk demand coefficient

\(k_\mathrm{{f}}\) :

Mass transfer coefficient

\(L\) :

Entrance length

\(P\) :

Index of Bessel function

\(P_\alpha \) :

Particular solution

\(Pe\) :

\(Pe={ P \acute{ e } clet }\) number

\(Sc\) :

Schmidt number

\(Sh\) :

Sherwood number

\(Sh_\mathrm{{{eq}}}\) :

Equilibrium Sherwood number

\(u_\alpha \) :

Velocity

\(X\) :

New streamwise coordinate

\(x\) :

Streamwise coordinate

\(Y\) :

New crosswise coordinate

\(y\) :

Crosswise coordinate

\(y_\mathrm{{v}}\) :

Velocity normal unit

References

  • Aryana, S.A., Kovscek, A.R.: Nonequilibrium effects and multiphase flow in porous media. Transp. Porous Media 97, 373–394 (2013)

    Article  Google Scholar 

  • Bhamra, K.S.: Partial Differential Equations; An Introductory Treatment with Applications. PHI Learning Pvt. Ltd., Delhi (2010)

    Google Scholar 

  • Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena, 2nd edn. Wiley, New York (2002)

    Google Scholar 

  • Boole, G.: On the general methods in analysis. Philos. Trans. Royal Soc. Lond. 134, 225–282 (1844)

    Article  Google Scholar 

  • Breugem, W.P., Boersma, B.J.: Direct numerical simulations of turbulent flow over a permeable wall using a direct and a continuum approach. Phys. Fluids 17, 025103 (2005)

  • Chrysikopoulos, C.V., Hsuana, P., Fyrillasb, M.M., Leec, K.Y.: Mass transfer coefficient and concentration boundary layer thickness for a dissolving NAPL pool in porous media. J. Hazard. Mater. 97, 245–255 (2003)

    Article  Google Scholar 

  • Davis, G.B., Patterson, B.M., Trefry, M.G.: Evidence for instantaneous oxygen-limited biodegradation of petroleum hydrocarbon vapours in the subsurface. Ground Water Monit. Remediat. 29, 126–137 (2009)

    Article  Google Scholar 

  • Franzmann, P.D., Zappia, L.R., Power, T.R., Davis, G.B., Patterson, B.M.: Microbial mineralisation of benzene and characterisation of microbial biomass in soil above hydrocarbon contaminated groundwater. FEMS Microbiol. Ecol. 30, 67–76 (1999)

    Article  Google Scholar 

  • Hanjalić, K., Kenjereš, S., Tummers, M.J., Jonker, H.J.J.: Analysis and Modelling of Physical Transport Phenomena. VSSD, Netherlands (2009)

    Google Scholar 

  • Hildebrand, F.B.: Advanced Calculus for Applications. PRENTICE-HALL INC., Englewood Cliffs NJ (1962)

    Google Scholar 

  • Hirsch, C.: Numerical Computation of Internal and External Flows. Elsevier, Boston (2009)

    Google Scholar 

  • Holman, H.Y.N., Javandel, I.: Evaluation of transient dissolution of slightly water-soluble compounds from a light nonaqueous phase liquid pool. Water Resour. Res. 32, 923 (1996)

    Google Scholar 

  • Ichikawa, Y., Selvadurai, A.P.S.: Transport Phenomena in Porous Media; Aspects of Micro/Macro Behaviour. Springer, Berlin (2012)

    Book  Google Scholar 

  • Johnston, C. D., Trefry, M. G.: Characteristics of light nonaqueous phase liquid recovery in the presence of fine-scale soil layering. Water Resour. Res., 45 (5): W05412, 2009. ISSN 1944–7973. doi:10.1029/2008WR007218

  • Lekmine, G., Bastow, T.P., Johnston, C.D., Davis, G.B.: Dissolution of multi-component LNAPL gasolines: the effects of weathering and composition. J. Contam. Hydrol. 160, 1–11 (2014)

    Article  Google Scholar 

  • Li, Jian, Liu, Jishan, Trefry, MichaelG, Park, Jungho, Liu, Keyu, Haq, Bashirul, Johnston, ColinD, Volk, Herbert: Interactions of microbial-enhanced oil recovery processes. Transp. Porous Media 87, 77–104 (2011)

    Article  Google Scholar 

  • Li, Jian, Liu, Jishan, Trefry, MichaelG, Liu, Keyu, Park, Jungho, Haq, Bashirul, Johnston, ColinD, Clennell, MichaelB, Volk, Herbert: Impact of rock heterogeneity on interactions of microbial-enhanced oil recovery processes. Transp. Porous Media 92, 373–396 (2012)

    Article  Google Scholar 

  • Lu, Guoping, Clement, T.Prabhakar, Zheng, Chunmiao, Wiedemeier, Todd H.: Natural attenuation of BTEX compounds. Ground Water 37, 707–717 (1999)

    Article  Google Scholar 

  • Malico, Isabel, Ferreira de Sousa, P. J. S. A.: Modeling the pore level fluid flow in porous media using the immersed boundary method. In Numerical Analysis of Heat and Mass Transfer in Porous Media. Springer, Berlin Heidelberg, (2012)

  • Mathias, S.A., van Reeuwijk, M.: Hydraulic fracture propagation with 3-D leak-off. Transp. Porous Media 80(3), 499–518 (2009)

    Article  Google Scholar 

  • Miller, Cass T., Poirier-McNeil, Michele M., Mayer, Alex S.: Dissolution of trapped nonaqueous phase liquids: Mass transfer characteristics. Water Resour. Res. 26, 2783–2796 (1990)

    Article  Google Scholar 

  • Miller, Cass T., Dawson, Clint N., Farthing, Matthew W., Hou, Thomas Y., Huang, Jingfang, Kees, Christopher E., Kelley, C.T., Langtangen, Hans Petter: Numerical simulation of water resources problems: models, methods, and trends. Advan. Water Resour. 51, 405–437 (2013)

    Article  Google Scholar 

  • Neale, Graham, Nader, Walter: Practical significance of Brinkman’s extension of Darcy’s law: coupled parallel flows within a channel and a bounding porous medium. Canad. J. Chem. Eng. 52, 475–478 (1974)

    Article  Google Scholar 

  • Ochoa-Tapia, J.A., Whitaker, S.: Momentum transfer at the boundary between a porous medium and a homogeneous fluid I. Theoretical development. Int. J. Heat Mass Transf. 38, 2635–2646 (1995)

    Article  Google Scholar 

  • Pinder, G.F., Gray, W.G.: Essentials of Multiphase Flow and Transport in Porous Media. Wiley, New York (2008)

    Book  Google Scholar 

  • Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  • Powers, Susan E., Abriola, Linda M., Weber, Walter J.: An experimental investigation of nonaqueous phase liquid dissolution in saturated subsurface systems: transient mass transfer rates. Water Resour. Res.30, 321–332 (1994)

  • Prommer, H., Davis, G.B., Barry, D.A.: Geochemical changes during biodegradation of petroleum hydrocarbons: field investigations and biogeochemical modelling. Org. Geochem. 30, 423–435 (1999)

    Article  Google Scholar 

  • Pruess, K., Battistelli, A.: TMVOC, A Numerical Simulator for Three-Phase Non-isothermal Flows of Multicomponent Hydrocarbon Mixtures in Saturated-Unsaturated Heterogeneous Media. Lawrence Berkeley National Laboratory, Berkeley (2002)

    Google Scholar 

  • Rao, P.S., Annable, M.D., Kim, H.: NAPL source zone characterization and remediation technology performance assessment: recent developments and applications of tracer techniques. J. Contam. Hydrol.45, 63–78 (2002)

  • Sahloul, N.A., Ioannidis, I., Chatzis, M.A.: Dissolution of residual non-aqueous phase liquids in porous media. Advan. Water Resour. 25, 33–49 (2002)

    Article  Google Scholar 

  • Sookhak Lari, K.: Mass transfer of solutes in turbulent wall-bounded flows reacting with the conduit surface. PhD thesis, Imperial College London, (2011)

  • Sookhak Lari, K., van Reeuwijk, M., Maksimović, Č.: Simplified numerical and analytical approach for solutes in turbulent flow reacting with smooth pipe walls. J. Hydraul. Eng.-ASCE 136, 626–632 (2010)

    Article  Google Scholar 

  • Sookhak Lari, K., van Reeuwijk, M., Maksimović, Č., Sharifan, S.: Combined bulk and wall reactions in turbulent pipe flow: decay coefficients and concentration profiles. J. Hydroinform. 13(3), 324–333 (2011). doi:10.2166/hydro.2010.013

    Article  Google Scholar 

  • Sookhak Lari, K., van Reeuwijk, M., Maksimović, Č.: The role of geometry in rough wall turbulent mass transfer. Heat Mass Transf. 49, 1191–1203 (2013)

    Article  Google Scholar 

  • Srinivasan, S., Rajagopal, K.R.: A thermodynamic basis for the derivation of the Darcy, Forchheimer and Brinkman models for flows through porous media and their generalizations. Int. J. Non-Linear Mech. 58, 162–166 (2014)

    Article  Google Scholar 

  • Vafai, K., Tien, C.L.: Boundary and inertia effects on convective mass transfer in porous media. Int. J. Heat Mass Transf. 25, 1183–1190 (1980)

    Article  Google Scholar 

  • Vafai, K., Tien, C.L.: Boundary and inertia effects on flow and heat transfer in porous media. Int. J. Heat Mass Transf. 24, 195–203 (1981)

    Article  Google Scholar 

  • van Reeuwijk, M., Sookhak Lari, K.: Asymptotic solutions for turbulent mass transfer at high Schmidt number. Proc. Royal Soc. A 468, 1676–1695 (2012a). doi:10.1098/rspa.2011.0538

    Article  Google Scholar 

  • van Reeuwijk, M., Sookhak Lari, K.: Asymptotic solutions for turbulent mass transfer augmented by a first order chemical reaction. Int. J. Heat Mass Transf. 55, 6485–6490 (2012b)

    Article  Google Scholar 

  • Vayenas, D.V., Michalopoulou, E., Constantinides, G.N., Pavlou, S., Payatakes, A.C.: Visualization experiments of biodegradation in porous media and calculation of the biodegradation rate. Advan. Water Resour. 25, 203–219 (2002)

    Article  Google Scholar 

  • Warhaft, Z.: Passive scalars in turbulent flows. Annu. Rev. Fluid Mech. 32, 203–240 (2000)

    Article  Google Scholar 

  • Whitaker, S.: Flow in porous media I: a theoretical derivation of Darcy’s law. Transp. Porous Media 1, 3–25 (1986a)

    Article  Google Scholar 

  • Whitaker, Stephen: Flow in porous media II: the governing equations for immiscible, two-phase flow. Transp. Porous Media 1, 105–125 (1986b)

    Article  Google Scholar 

  • Yaws, C.L. (ed.): Transport Properties of Chemicals and Hydrocarbons: Viscosity, Thermal Conductivity, and Diffusivity for More Than 7800 Hydrocarbons and Chemicals, Including C1 to C100 Organics and Ac to Zr Inorganics. William Andrew, New York (2009)

    Google Scholar 

Download references

Acknowledgments

This study was partially funded by CRC CARE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaveh Sookhak Lari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sookhak Lari, K., Johnston, C.D. & Davis, G.B. Interfacial Mass Transport in Porous Media Augmented with Bulk Reactions: Analytical and Numerical Solutions. Transp Porous Med 106, 405–423 (2015). https://doi.org/10.1007/s11242-014-0407-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-014-0407-3

Keywords

Navigation