Skip to main content
Log in

Nonequilibrium Effects and Multiphase Flow in Porous Media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

In this paper we develop a more general formulation for transient multiphase flow in porous media based on physics observed in core-scale and micromodel experiments. We account for non-equilibrium effects by considering redistribution time and treat saturation by evolving locally moving time-averages of the saturation. Several families of models arise from approximations to the general formulation with various degrees of accuracy. The classical Buckley-Leverett and Barenblatt expressions are special cases of these families. We explore the behaviors of a number of special cases arising from the proposed general formulation using established and novel numerical schemes that provide nonlinear physics-based preconditioning. The agreement observed between numerical and experimental results demonstrates the consistency of the proposed abstraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anderson, W.: Wettability Literature Survey Part 5: The Effects Of Wettability On Relative Permeability. J. Petroleum Technol. 39(11), 1453–1468 (1987)

    Google Scholar 

  • Aryana, S.A.: Nonequilibrium effects in multiphase flow in porous media. PhD thesis, Stanford University (2012)

  • Avraam, D.G., Payatakes, A.C.: Flow regimes and relative permeabilities during steady-state two-phase flow in porous media. J. Fluid Mech. 293, 207–236 (1995)

    Article  Google Scholar 

  • Avraam, D.G., Payatakes, A.C.: Flow mechanisms, relative permeabilities, and coupling effects in steady-state two-phase flow through porous media. The case of strong wettability. Ind. Eng. Chem. Res. 38(3), 778–786 (1999)

    Article  Google Scholar 

  • Baker, L.E.: Three-phase relative permeability correlations. In: SPE Enhanced Oil Recovery, Symposium, pp. 539–554, SPE-17369 (1988)

  • Barenblatt, G.I., Azorero, J.G., De Pablo, A., Vazquez, J.L.: Mathematical model of the non equilibrium water oil displacement in porous strata. Appl. Anal. 65(1), 19–45 (1997)

    Article  Google Scholar 

  • Barenblatt, G.I., Entov, V.M., Ryzhik, V.M., Ryzhik, V.M.: Theory of Fluid Flows Through Natural Rocks. Springer, New York (1990)

    Google Scholar 

  • Barenblatt, G.I., Patzek, T.W., Silin, D.B.: The mathematical model of non-equilibrium effects in water-oil displacement. In: SPE/DOE Improved Oil Recovery Symposium (2002)

  • Bellen, A., Zennaro, M.: Numerical Methods for Delay Differential Equations. Oxford University Press, Oxford (2003)

    Book  Google Scholar 

  • Blunt, M.J.: An empirical model for three-phase relative permeability. SPE J. 5(4), 435–445 (2000)

    Google Scholar 

  • Buckley, S.E., Leverett, M.C.: Mechanism of fluid displacement in sands. Trans. AIME. 146, 107–116 (1942)

    Google Scholar 

  • Cuesta, C.M., Pop, I.S.: Numerical schemes for a pseudo-parabolic Burgers equation: Discontinuous data and long-time behaviour. J. Comput. Appl. Math. 224(1), 269–283 (2009)

    Article  Google Scholar 

  • Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration. Academic press, New York (1975)

    Google Scholar 

  • Dormand, J.R., Prince, P.J.: A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 6(1), 19–26 (1980)

    Article  Google Scholar 

  • Earman, J., Glymour, C.N., Stachel, J.J.: Foundations of Space-Time Theories, vol. 8. University of Minnesota Press, Minneapolis (1977)

    Google Scholar 

  • Geffen, T.M., Owens, W.W., Parrish, D.R., Morse, R.A.: Experimental investigation of factors affecting laboratory relative permeability measurements. Trans. AIME. 192, 99 (1951)

    Google Scholar 

  • Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 135(2), 260–278 (1997)

    Article  Google Scholar 

  • Hassanizadeh, S.M., Celia, M.A., Dahle, H.K.: Dynamic effect in the capillary pressure-saturation relationship and its impacts on unsaturated flow. Vadose Zone J. 1(1), 38 (2002)

    Google Scholar 

  • Hassanizadeh, S.M., Gray, W.G.: Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries. Adv. Water Resour. 13(4), 169–186 (1990)

    Article  Google Scholar 

  • Hassanizadeh, S.M., Gray, W.G.: Thermodynamic basis of capillary pressure in porous media. Water Resour. Res. 29(10), 3389–3405 (1993)

    Article  Google Scholar 

  • Honarpour, M.M., Koederitz, F., Herbert, A.: Relative Permeability of Petroleum Reservoirs. CRC Press Inc, Boca Raton (1986)

    Google Scholar 

  • Jin, S.: Runge-kutta methods for hyperbolic conservation laws with sti relaxation terms. J. Comput. Phys. 122(1), 51–67 (1995)

    Article  Google Scholar 

  • Jin, S., Levermore, C.D.: Numerical schemes for hyperbolic conservation laws with stiff relaxation terms. J. Comput. Phys. 126(2), 449–467 (1996)

    Article  Google Scholar 

  • Josendal, V.A., Sandiford, B.B., Wilson, J.W., et al.: Improved multiphase flow studies employing radioactive tracers. Trans. AIME. 195, 65–76 (1952)

    Google Scholar 

  • Juanes, R.: Nonequilibrium effects in models of three-phase flow in porous media. Adv. Water Resour. 31(4), 661–673 (2008)

    Article  Google Scholar 

  • Kissling, F., Helmig, R., Rohde, C.: Simulation of infiltration processes in the unsaturated zone using a multiscale approach. Vadose Zone J. 11(3), (2012)

  • Kuang, Y.: Delay differential equations: with applications in population dynamics. Academic Press, New York (1993)

    Google Scholar 

  • Kurganov, A., Tadmor, E.: New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160(1), 241–282 (2000)

    Article  Google Scholar 

  • Le Guen, S.S., Kovscek, A.R.: Nonequilibrium effects during spontaneous imbibition. Transp. Porous Media 63(1), 127–146 (2006)

    Article  Google Scholar 

  • Lenhard, R.J., Parker, J.C.: A model for hysteretic constitutive relations governing multiphase flow: 2. Permeability-saturation relations. Water Resour. Res. 23(12), 2197–2206 (1987)

    Google Scholar 

  • Levine, J.S.: Displacement experiments in a consolidated porous system. Trans. AIME. 201, 57 (1954)

    Google Scholar 

  • Minkowski, H.: Raum und Zeit. Physikalische Zeitschrift 10, 104–111 (1909)

    Google Scholar 

  • Muskat, M. and Meres, M.W.: The flow of heterogeneous fluids through porous media. J. Appl. Phys. 7 (1936)

  • Natalini, R., Tesei, A.: On the Barenblatt model for non-equilibrium two phase flow in porous media. Arch. Ration. Mech. Anal. 150(4), 349–367 (1999)

    Article  Google Scholar 

  • Osoba, J.S., Richardson, J.G., Kerver, J.K., Hafford, J.A., Blair, P.M., et al.: Laboratory measurements of relative permeability. Trans. AIME. 192(4), 56 (1951)

    Google Scholar 

  • Pember, R.B.: Numerical methods for hyperbolic conservation laws with stiff relaxation i. spurious solutions. SIAM J. Appl. Math. pp. 1293–1330 (1993a)

  • Pember, R.B.: Numerical methods for hyperbolic conservation laws with stiff relaxation ii. higher-order godunov methods. SIAM J. Sci. Comput. 14, 824–859 (1993b)

    Article  Google Scholar 

  • Penrose, R.: The Road to Reality: A Complete Guide to the Laws of Physics. Jonathan Cape, London (2004)

    Google Scholar 

  • Riaz, A., Tang, G.Q., Tchelepi, H.A., Kovscek, A.R.: Forced imbibition in natural porous media: Comparison between experiments and continuum models. Phys. Rev. E 75(3), 36305 (2007)

    Article  Google Scholar 

  • Schembre, J.M., Kovscek, A.R.: Estimation of dynamic relative permeability and capillary pressure from countercurrent imbibition experiments. Trans. Porous Media 65(1), 31–51 (2006)

    Article  Google Scholar 

  • Shampine, L.F., Reichelt, M.W.: The matlab ode suite. SIAM J. Sci. Comput. 18(1), 1–22 (1997)

    Article  Google Scholar 

  • Shampine, L.F., Thompson, S.: Solving DDEs in MATLAB. Appl. Numer. Math. 37(4), 441–458 (2001)

    Article  Google Scholar 

  • Silin, D., Patzek, T.: On Barenblatt’s model of spontaneous countercurrent imbibition. Trans. Porous Media 54(3), 297–322 (2004)

    Article  Google Scholar 

  • Snell, R.W.: Three-phase relative permeability in an unconsolidated sand. J. Inst. Pet. 48(459), 80–88 (1962)

    Google Scholar 

  • Juanes, R., Spiteri, E.J., Orr Jr, F.M., Blunt, M.J.: Impact of relative permeability hysteresis on geological CO2 storage. Water Resour. Res. 42 (2006)

  • Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. numer. anal. pp. 995–1011 (1984)

  • Tang, G.Q., Kovscek, A.R.: High resolution imaging of unstable, forced imbibition in berea sandstone. Trans. Porous Media 86(2), 647–664 (2011)

    Article  Google Scholar 

  • Terwilliger, P.L., Wilsey, L.E., Hall, H.N., Bridges, P.M., Morse, R.A.: An experimental and theoretical investigation of gravity drainage performance. Trans. AIME. 192, 285 (1951)

    Google Scholar 

  • Van Leer, B.: Towards the ultimate conservative difference scheme. ii. monotonicity and conservation combined in a second-order scheme. J. Comput. Phys. 14(4), 361–370 (1974)

    Article  Google Scholar 

  • Van Leer, B.: Towards the ultimate conservative difference scheme. v. a second-order sequel to godunov’s method. J. Comput. Phys. 32(1), 101–136 (1979)

    Article  Google Scholar 

  • Vives, M., Chang, Y., Mohanty, K.: Effect of wettability on adverse-mobility immiscible floods. SPE J. 4(3), 260–267 (1999)

    Google Scholar 

Download references

Acknowledgments

The first author thanks Anne T. and Robert M. Bass for their generous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saman A. Aryana.

Additional information

S. A. Aryana: Anne T. and Robert M. Bass Fellow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aryana, S.A., Kovscek, A.R. Nonequilibrium Effects and Multiphase Flow in Porous Media. Transp Porous Med 97, 373–394 (2013). https://doi.org/10.1007/s11242-013-0129-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-013-0129-y

Keywords

Navigation