Skip to main content

Advertisement

Log in

Gas–Gas Dispersion Coefficient Measurements Using Low-Field MRI

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The dispersion coefficient of displacing fluids within porous media is an important parameter to measure accurately for a range of applications. For example, enhanced gas recovery is an emerging technology where carbon dioxide is injected into natural gas reservoirs as a means of maintaining the pressure of the reservoir and to hence enhance the natural gas recovery, with the additional benefit of carbon dioxide sequestration. Research is currently being done to measure the dispersion coefficient of carbon dioxide into methane because carbon dioxide is a contaminant that reduces the value of the natural gas. Such dispersion experiments are difficult to perform in the laboratory using conventional rock core flooding equipment as erroneous contributions to the dispersion process from entry and exit effects (into and out of the rock core respectively) are impossible to eliminate completely. Previously, we have estimated the resultant error to be of the order of 25 % (Hughes et al., Int J Greenh Gas Control 9:457–468, 2012). Here we effectively deploy spatially resolved breakthrough curves which are characteristic of the dispersion process for carbon dioxide replacing methane. These are obtained from time-resolved 1D magnetic resonance imaging (MRI) profiles. By analysis of the additional dispersion between these time-resolved profiles, we are able to eliminate the entry/exit effects and obtain more accurate values for the dispersion coefficient. We demonstrate this using a model porous medium (mono-dispersed glass beads) in a cell capable of holding gas pressures up to 80 bar in a low-field MRI rock core analyser. Via simultaneous conventional IR analysis of the carbon dioxide effluent to determine the dispersion coefficient, we are also able to directly quantify the magnitude of the error due to these entry/exit effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anadon, L.D., Sederman, A.J., Gladden, L.F.: Mechanism of the trickle-to-pulse flow transition in fixed-bed reactors. Aiche J. 52(4), 1522–1532 (2006). doi:10.1002/aic.10737

    Article  Google Scholar 

  • Bar, N.K., Balcom, B.J., Ruthven, D.M.: Direct measurement of transient concentration profiles in adsorbent particles and chromatographic columns by MRI. Ind. Eng. Chem. Res. 41(9), 2320–2329 (2002). doi:10.1021/ie010821s

    Article  Google Scholar 

  • Baril, E., Mostafid, A., Lefebvre, L.P., Medraj, M.: Experimental demonstration of entrance/exit effects on the permeability measurements of porous materials. Adv. Eng. Mater. 10(9), 889–894 (2008). doi:10.1002/adem.200800142

    Article  Google Scholar 

  • Bencsik, M., Ramanathan, C.: Method for measuring local hydraulic permeability using magnetic resonance imaging. Phys. Rev. E 63(6), 065302 (2001)

    Article  Google Scholar 

  • Bijeljic, B., Mostaghimi, P., Blunt, M.J.: Signature of Non-Fickian Solute Transport in Complex Heterogeneous Porous Media. Phys. Rev. Lett. 107(20), (2011). doi:10.1103/PhysRevLett.107.204502

  • Blumich, B.: NMR Imaging of Materials, vol. 57. Oxford University Press, Oxford (2000)

  • Bonardet, J.L., Domeniconi, T., N’Gokoli-Kekele, P., Springuel-Huet, M.A., Fraissard, J.: Hydrocarbon diffusion measurements and coke distribution in zeolite pellets: a study by H-1 NMR imaging and Xe-129 NMR spectroscopy. Langmuir 15(18), 5836–5840 (1999). doi:10.1021/la981308v

    Article  Google Scholar 

  • Brosten, T.R., Vogt, S.J., Seymour, J.D., Codd, S.L., Maier, R.S.: Preasymptotic hydrodynamic dispersion as a quantitative probe of permeability. Phys. Rev. E 85(4), 045301–045301-045304 (2012). doi:10.1103/PhysRevE.85.045301

  • Callaghan, P.T.: Principles of Nuclear Magnetic Resonance Microscopy. Clarendon Press, Oxford (1991)

    Google Scholar 

  • Carberry, J.J., Bretton, R.H.: Axial dispersion of mass in flow through fixed beds. Aiche J. 4(3), 367–375 (1958). doi:10.1002/aic.690040327

    Article  Google Scholar 

  • Catchpole, O.J., Bernig, R., King, M.B.: Measurement and correlation of packed-bed axial dispersion coefficients in supercritical carbon dioxide. Ind. Eng. Chem. Res. 35(3), 824–828 (1996). doi:10.1021/ie9502953

    Article  Google Scholar 

  • Cheng, Y.S., Huang, Q.L., Eic, M., Balcom, B.J.: CO2 dynamic adsorption/desorption on zeolite 5A studied by C-13 magnetic resonance imaging. Langmuir 21(10), 4376–4381 (2005). doi:10.1021/la047302p

    Article  Google Scholar 

  • Codd, S.L., Altobelli, S.A.: A PGSE study of propane gas flow through model porous bead packs. J. Magn. Reson. 163(1), 16–22 (2003). doi:10.1016/s1090-7807(03)00111-3

    Article  Google Scholar 

  • Delgado, J.: A critical review of dispersion in packed beds. Heat Mass Transf. 42(4), 279–310 (2006). doi:10.1007/s00231-005-0019-0

    Article  Google Scholar 

  • Deurer, M., Vogeler, I., Clothier, B.E., Scotter, D.R.: Magnetic resonance imaging of hydrodynamic dispersion in a saturated porous medium. Transp. Porous Media 54(2), 145–166 (2004). doi:10.1023/a:1026358431442

    Article  Google Scholar 

  • Deurer, M., Vogeler, I., Khrapitchev, A., Scotter, D.: Imaging of water flow in porous media by magnetic resonance imaging microscopy. J. Environ. Qual. 31(2), 487–493 (2002)

    Article  Google Scholar 

  • Edwards, M.F., Richardson, J.F.: Gas dispersion in packed beds. Chem. Eng. Sci. 23(2), 109–123 (1968). doi:10.1016/0009-2509(68)87056-3

    Article  Google Scholar 

  • Fridjonsson, E.O., Seymour, J.D., Schultz, L.N., Gerlach, R., Cunningham, A.B., Codd, S.L.: NMR measurement of hydrodynamic dispersion in porous media subject to biofilm mediated precipitation reactions. J. Contam. Hydrol. 120–21, 79–88 (2011). doi:10.1016/j.jconhyd.2010.07.009

  • Gladden, L.F., Sederman, A.J.: Recent advances in Flow MRI. J. Magn. Reson. 229, 2–11 (2013). doi:10.1016/j.jmr.2012.11.022

    Article  Google Scholar 

  • Greiner, A., Schreiber, W., Brix, G., Kinzelbach, W.: Magnetic resonance imaging of paramagnetic tracers in porous media: quantification of flow and transport parameters. Water Resour. Res. 33(6), 1461–1473 (1997). doi:10.1029/97wr00657

    Article  Google Scholar 

  • Guntuka, S., Farooq, S., Rajendran, A.: A- and B-Site substituted lanthanum cobaltite perovskite as high temperature oxygen sorbent. 2. Column dynamics study. Ind. Eng. Chem. Res. 47(1), 163–170 (2008). doi:10.1021/ie070860p

    Article  Google Scholar 

  • Honari, A., Hughes, T.J., Fridjonsson, E.O., Johns, M.L., May, E.F.: Dispersion of supercritical CO\(_2\) and CH\(_4\) in consolidated porous media for enhanced gas recovery simulations. Int. J. Greenh. Gas Control 19(0), 234–242 (2013). doi: 10.1016/j.ijggc.2013.08.016

    Article  Google Scholar 

  • Hughes, T.J., Honari, A., Graham, B.F., Chauhan, A.S., Johns, M.L., May, E.F.: CO2 sequestration for enhanced gas recovery: new measurements of supercritical CO\(_2\)–CH\(_4\) dispersion in porous media and a review of recent research. Int. J. Greenh. Gas Control 9, 457–468 (2012). doi: 10.1016/j.ijggc.2012.05.011

    Article  Google Scholar 

  • Koptyug, I.V.: MRI of mass transport in porous media: drying and sorption processes. Prog. Nucl. Magn. Reson. Spectrosc. 65, 1–65 (2012). doi:10.1016/j.pnmrs.2011.12.001

    Article  Google Scholar 

  • Koptyug, I.V., Matveev, A.V., Altobelli, S.A.: NMR studies of hydrocarbon gas flow and dispersion. Appl. Magn. Reson. 22(2), 187–200 (2002)

    Article  Google Scholar 

  • Mair, R.W., Wong, G.P., Hoffmann, D., Hurlimann, M.D., Patz, S., Schwartz, L.M., Walsworth, R.L.: Probing porous media with gas diffusion NMR. Phys. Rev. Lett. 83(16), 3324–3327 (1999). doi:10.1103/PhysRevLett.83.3324

  • Manz, B., Gladden, L.F., Warren, P.B.: Flow and dispersion in porous media: Lattice–Boltzmann and NMR studies. Aiche J. 45(9), 1845–1854 (1999). doi:10.1002/aic.690450902

    Article  Google Scholar 

  • Newling, B.: Gas flow measurements by NMR. Prog. Nucl. Magn. Reson. Spectrosc. 52(1), 31–48 (2008). doi:10.1016/j.pnmrs.2007.08.002

    Article  Google Scholar 

  • Oldenburg, C.M., Doughty, C.: Injection, flow, and mixing of CO\(_2\) in porous media with residual gas. Transp. Porous Media 90(1), 201–218 (2011). doi: 10.1007/s11242-010-9645-1

    Article  Google Scholar 

  • Oldenburg, C.M., Pruess, K., Benson, S.M.: Process modeling of CO\(_2\) injection into natural gas reservoirs for carbon sequestration and enhanced gas recovery. Energy Fuels 15(2), 293–298 (2001). doi: 10.1021/ef000247h

    Article  Google Scholar 

  • Oldenburg, C.M., Stevens, S.H., Benson, S.M.: Economic feasibility of carbon sequestration with enhanced gas recovery (CSEGR). Energy 29(9–10), 1413–1422 (2004). doi:10.1016/j.energy.2004.03.075

    Article  Google Scholar 

  • Oswald, S.E., Scheidegger, M.B., Kinzelbach, W.: Time-dependent measurement of strongly density-dependent flow in a porous medium via nuclear magnetic resonance imaging. Transp. Porous Media 47(2), 169–193 (2002). doi:10.1023/a:1015508410514

    Article  Google Scholar 

  • Perkins, T.K., Johnston, O.C.: A review of diffusion and dispersion in porous media. Soc. Pet. Eng. J. 3(1), 70–84 (1963)

    Article  Google Scholar 

  • Pooladi-Darvish, M., Hong, H., Theys, S., Stocker, R., Bachu, S., Dashtgard, S.: \(\text{ CO }_{2}\) injection for enhanced gas recovery and geological storage of \(\text{ CO }_{2}\) in the long Coulee Glauconite F pool, Alberta. Paper presented at the SPE Annual Technical Conference and Exhibition, Denver

  • Prado, P.J., Balcom, P.J., Jama, M.: Single-point magnetic resonance imaging study of water adsorption in pellets of zeolite 4A. J. Magn. Reson. 137(1), 59–66 (1999). doi:10.1006/jmre.1998.1634

    Article  Google Scholar 

  • Price, W.S.: NMR Studies of Translational Motion: Principles and Applications. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  • Rajendran, A., Kariwala, V., Farooq, S.: Correction procedures for extra-column effects in dynamic column breakthrough experiments. Chem. Eng. Sci. 63(10), 2696–2706 (2008). doi:10.1016/j.ces.2008.02.023

    Article  Google Scholar 

  • Romanenko, K.V., Balcom, B.J.: Permeability mapping in porous media by magnetization prepared centric-scan SPRITE. Exp. Fluids 50(2), 301–312 (2011). doi:10.1007/s00348-010-0923-z

    Article  Google Scholar 

  • Saleman, T.L.H., Watson, G.C.Y., Rufford, T.E., Hofman, P.S., Chan, K.I., May, E.F.: Capacity and kinetic measurements of methane and nitrogen adsorption on H+-mordenite at 243–303 K and pressures to 900 kPa using a dynamic column breakthrough apparatus. Adsorpt. J. Int. Adsorpt. Soc. 19(6), 1165–1180 (2013). doi:10.1007/s10450-013-9546-z

    Article  Google Scholar 

  • Sankey, M.H., Holland, D.J., Sederman, A.J., Gladden, L.F.: Magnetic resonance velocity imaging of liquid and gas two-phase flow in packed beds. J. Magn. Reson. 196(2), 142–148 (2009). doi:10.1016/j.jmr.2008.10.021

    Article  Google Scholar 

  • Scheven, U., Verganelakis, D., Harris, R., Johns, M., Gladden, L.: Quantitative nuclear magnetic resonance measurements of preasymptotic dispersion in flow through porous media. Phys. Fluids 17(11), 7107 (2005)

    Article  Google Scholar 

  • Scheven, U.M., Harris, R., Johns, M.L.: Intrinsic dispersivity of randomly packed monodisperse spheres. Phys. Rev. Lett. 99(5) (2007). doi:10.1103/PhysRevLett.99.054502

  • Sen, P.N.: Time-dependent diffusion coefficient as a probe of geometry. Concepts Magn. Reson. 23A(1), 1–21 (2004). doi:10.1002/cmr.a.20017

    Article  Google Scholar 

  • Seo, J.G., Mamora, D.D.: Experimental and simulation studies of sequestration of supercritical carbon dioxide in depleted gas reservoirs. J. Energy Resour. Technol. 127(1), 1–6 (2005). doi:10.1115/1.1790538

    Article  Google Scholar 

  • Seymour, J.D., Callaghan, P.T.: Generalized approach to NMR analysis of flow and dispersion in porous media. Aiche J. 43(8), 2096–2111 (1997)

    Article  Google Scholar 

  • Takahashi, S., Iwasaki, H.: The diffusion of gases at high pressures. III. The diffusion of 14CO\(_2\) in the 12CO2-CH4 system. Bulletin of the Chemical Research Institute of Non-aqueous Solutions, Tohoku University 20, 27–36 (1970)

  • Tallarek, U., van Dusschoten, D., Van As, H., Bayer, E., Guiochon, G.: Study of transport phenomena in chromatographic columns by pulsed field gradient NMR. J. Phys. Chem. B 102(18), 3486–3497 (1998)

    Article  Google Scholar 

  • Taylor, G.: Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. Ser. A 219(1137), 186–203 (1953). doi:10.1098/rspa.1953.0139

    Article  Google Scholar 

  • Taylor, G.: Conditions under which dispersion of a solute in a stream of solvent can be used to measure molecular diffusion. Proc. R. Soc. Lond. Ser. A 225(1163), 473–477 (1954). doi:10.1098/rspa.1954.0216

    Article  Google Scholar 

  • Vandeweijer, V., van der Meer, B., Hofstee, C., Mulders, F., D’Hoore, D., Graven, H.: Monitoring the CO\(_2\) injection site: K12-B. 10th International Conference on Greenhouse Gas Control Technologies 4, 5471–5478 (2011a). doi:10.1016/j.egypro.2011.02.532

  • Vandeweijer, V., Van der Meer, L.G.H., Hofstee, C., Mulders, F., Graven, H., D’Hoore, D.: Monitoring \(\text{ CO }_{2}\) injection at K12-B. http://www.co2geonet.com/UserFiles/file/Open%20Forum%202011/PDF-presentations/2-10_Vanderweijer.pdf (2011b). Accessed Aug 21, 2011

  • Weber, D., Sederman, A.J., Mantle, M.D., Mitchell, J., Gladden, L.F.: Surface diffusion in porous catalysts. Phys. Chem. Chem. Phys. 12(11), 2619–2624 (2010). doi:10.1039/b921210h

    Article  Google Scholar 

  • Wood, J., Gladden, L.F.: Effect of coke deposition upon pore structure and self-diffusion in deactivated industrial hydroprocessing catalysts. Appl. Catal. A 249(2), 241–253 (2003). doi:10.1016/s0926-860x(03)00200-x

    Article  Google Scholar 

  • Yu, D., Jackson, K., Harmon, T.C.: Dispersion and diffusion in porous media under supercritical conditions. Chem. Eng. Sci. 54(3), 357–367 (1999). doi:10.1016/s0009-2509(98)00271-1

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding for the NMR apparatus from the ARC via LE110100189. This work was supported by the Western Australian Department of Environment Regulation through the Low Emissions Energy Development fund. EFM acknowledges Chevron for their support of the research through the Gas Process Engineering endowment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Johns.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Honari, A., Vogt, S.J., May, E.F. et al. Gas–Gas Dispersion Coefficient Measurements Using Low-Field MRI. Transp Porous Med 106, 21–32 (2015). https://doi.org/10.1007/s11242-014-0388-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-014-0388-2

Keywords

Navigation