Skip to main content
Log in

Effect of Moisture Movement on Tested Thermal Conductivity of Moist Aerated Autoclaved Concrete

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The purpose of this work was to study both theoretically and experimentally the process of moisture redistribution and heat transfer due to phase changes during the tests of thermal conductivity in aerated autoclaved concrete (AAC) moist specimens. The different moisture contents of the test samples were obtained in climatic chamber at equilibrium conditions reached with constant air temperature and variable relative humidity. The moist specimens were sealed inside highly impermeable polyethylene bag, as required by UNI 10051, and placed in a heat flow meter apparatus. During the experimental thermal conductivity measurements, the temperature and heat flow rate were measured under transient and steady state conditions. A theoretical analysis of the heat and mass transfer process was performed and then a suitable numerical model was used to predict the moisture redistribution and heat transfer due to the phase changes. The theoretical model has been compared against the experimental data. Substantial agreement between numerical results and experimental data was found. Then several numerical simulations have been performed to study the influence of the errors due to phase changes and non-uniform moisture distribution during the test of thermal conductivity of moist AAC specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Abbreviations

\(A\) :

Coefficient

\(a\) :

Coefficient

\(B\) :

Coefficient

\(c\) :

Specific heat (J/kg K)

\(D\) :

Diffusion coefficient (m\(^{2}\)/s)

\(E\) :

Error

\(h\) :

Specific enthalpy (J/kg)

g :

Gravity vector (m/s\(^{2}\))

j :

Mass flux vector (kg/m\(^{2}\,\)s)

\(K\) :

Intrinsic permeability (m\(^{2}\))

\(L\) :

Thickness (m)

M:

Molar mass (kg/kmol)

\(m\) :

Mass (kg)

\(\dot{m}\) :

Evaporated water in units of time and volume (kg/m\(^{3}\,\)s)

\(n\) :

Coefficient

\(p\) :

Pressure (Pa)

q :

Heat flux vector (W/m\(^{2}\))

R:

Universal gas constant (J/kmol K)

\(r\) :

Pore radius (m)

RH:

Relative humidity

\(S\) :

Saturation

\(T\) :

Temperature (K)

\(t\) :

Time (s)

\(u\) :

Moisture content mass by mass

v :

Velocity vector (m/s)

\(w\) :

Moisture content mass by volume (kg/m\(^{3}\))

\(\alpha \) :

Coefficient

\(\beta \) :

Coefficient

\(\delta \) :

Coefficient

\(\varepsilon \) :

Porosity

\(\gamma \) :

Surface tension (N/m)

\(\lambda \) :

Thermal conductivity (W/m K)

\(\mu \) :

Viscosity (kg/m s)

\(\rho \) :

Density (kg/m\(^{3}\))

\(\tau \) :

Tortuosity

\(a\) :

Air

\(c\) :

Capillary

\(d\) :

Dry

\(da\) :

Dry air

\(g\) :

Gaseous phase

\(irr\) :

Irreducible

\(l\) :

Liquid phase

\(r\) :

Relative

\(tot\) :

Total

\(vap\) :

Evaporation

\(w\) :

Moist

\(wv\) :

Water vapor

References

  • Baggio, P., Maiorana, C.E., Schrefler, B.A.: Thermo-hygro-mechanical analysis of concrete. Int. J. Numer. Methods Fluids 20, 573–595 (1995)

    Article  Google Scholar 

  • Baggio, P., Campanale, M., Moro, L.: Analytical and experimental investigations on the transient heat transfer process in moist wood wool slabs. J. Therm. Envel. Build. Sci. 24, 211–225 (2001)

    Article  Google Scholar 

  • Degiovanni, A., Moyne, C.: Conductivité thermique de matériaux poreux humides: évaluation théorique et possibilité de mesure. Int. J. Heat Mass Transf. 30(11), 2225–2245 (1987)

    Article  Google Scholar 

  • Galbraith, G.H., Mclean, R.C., Guo, J., Kelly, D., Lee, C.: The use of differential permeability in moisture transport modelling. In: Proceedings of Building Performance Simulation, Kyoto, vol. 1, pp. 267–271 (1999)

  • Hansen, K.K.: Sorption Isotherms, a Catalogue. Department of Civil Engineering, The Technical University of Denmark, Building Materials Laboratory (1986)

  • Hassanizadeh, M., Gray, W.G.: General conservation equations for multiphase systems: 1 averaging technique. Adv. Water Res. 2, 131–144 (1979)

    Article  Google Scholar 

  • Hassanizadeh, M., Gray, W.G.: General conservation equations for multiphase systems: 2 mass, momenta, energy and entropy equations. Adv. Water Res. 2, 191–203 (1979)

    Article  Google Scholar 

  • Hassanizadeh, M., Gray, W.G.: General conservation equations for multiphase systems: 3 constitutive theory for porous media flow. Adv. Water Res. 3, 25–40 (1980)

    Article  Google Scholar 

  • ISO 10051: Thermal insulation. Moisture effects on heat transfer. Determination of thermal transmissivity of a moist material (1996)

  • Kumaran, M.K.: Moisture transport trough glass-fibre insulation in the presence of a thermal gradient. J. Therm. Insulation 10, 243–255 (1987)

    Google Scholar 

  • Nasrallah, S.B., Perre, P.: Detailed study of a model of heat and mass transfer during convective drying processes. Int. J. Heat Mass Transf. 31(5), 957–967 (1988)

    Article  Google Scholar 

  • Roels, S., Carmeliet, J., Hens, H., Adan, O., Brocken, H., Cerny, R., Pavlik, Z., Hall, C., Kumaran, K., Pel, L., Plagge, R.: Interlaboratory comparison of hygric properties of porous building materials. J. Therm. Envelope Build. Sci. 27(4), 307–325 (2004)

    Google Scholar 

  • Sandberg, P.I.: Thermal Resistance of Wet Insulation Materials. Technical Report 29. Swedish National Testing Institute, Boras, Sweden (1986)

  • Whitaker, S.: Simultaneous heat mass and momentum transfer in porous media: a theory of drying. Adv. Heat Transf. 13, 119–203 (1977)

    Article  Google Scholar 

  • Whitaker, S.: Heat and mass transfer in granular porous media. Adv. Dry. 1, 23–61 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Deganello.

Annex A

Annex A

  • Dry density AAC 450: \(\rho _{d} = 450\,\text{ kg}/\text{ m}^{3}\)

  • Dry density AAC 350: \(\rho _{d} = 350 \text{ kg}/\text{ m}^{3}\)

  • Dry thermal conductivity AAC 450: \(\lambda _{d} = 0.122\) W/m K

  • Dry thermal conductivity AAC 350: \(\lambda _{d} =0.097\) W/m K

  • Irreducible saturation: \(S_{irr} = 0.09\)

  • Porosity AAC 450: \(\varepsilon = 0.80\)

  • Porosity AAC 350: \(\varepsilon = 0.843\)

  • Specific heat: \(c_{ps} = 850\) J/kg K

  • \(A = 0.920\,\text{ kg}_\mathrm{w}/\text{ kg}_\mathrm{d}\)

  • \(a = 0.0004\,\text{ Wm}^{2}\)/kg K

  • \(B = 0.123{\,\cdot \,}10^{-3}\)

  • \(D_{a} = 2.58{\,\cdot \,}10^{-5}\,\text{ m}^{2}/\text{ s}\)

  • \(K = 10^{-12}\,\text{ m}^{2}\)

  • \(n = 2.211\)

  • \(\alpha = 0.293\)

  • \(\beta = 1.131\)

  • \(\delta = 20.273\)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campanale, M., Deganello, M. & Moro, L. Effect of Moisture Movement on Tested Thermal Conductivity of Moist Aerated Autoclaved Concrete. Transp Porous Med 98, 125–146 (2013). https://doi.org/10.1007/s11242-013-0136-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-013-0136-z

Keywords

Navigation