Skip to main content

Advertisement

Log in

Experimental Determination of Frost Resistance of Autoclaved Aerated Concrete at Different Levels of Moisture Saturation

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The ability of porous building materials to stand up to moisture phase changes induced by alternating environment is described mostly by means of their frost resistance. However, the test conditions defined by relevant standards might not capture the real situation on building site in various locations. In particular, the prescribed full water saturation of analyzed specimens during the whole time of a freeze/thaw experiment presents an ultimate case only but certainly not an everyday reality. Even the materials of surface layers are mostly exposed to such severe conditions just for a limited period of time. In this paper, the experimental analysis of frost resistance of three different types of autoclaved aerated concrete (AAC) is performed in an extended way, including not only the standard testing but also the investigation of dry- and partially saturated samples. A complementary computational analysis of an AAC building envelope in Central European climate is presented as well, in order to illustrate the likely hygric conditions in the wall. Experimental results show that according to the standard test the loss of compressive strength, as well as the loss of mass after 25 cycles, is acceptable for all studied samples but after 50 cycles only the material with the compressive strength of 4 MPa performs satisfactorily. On the other hand, the tests with initially dried or partially saturated samples indicate a good frost resistance of all studied materials for both 25 and 50 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Abid, X.M. Hou, W.Z. Zheng, R.R. Hussain, Constr. Build. Mater. 147, 339 (2017)

    Article  Google Scholar 

  2. R. Prikryl, Miner. Depos. Res. High-Tech World 1–4, 1829 (2013)

    Google Scholar 

  3. J. M. P. Q. Delgado, A. S. Guimarães, V. P. de Freitas, I. Antepara, V Kočí, R. Černý, Adv. Mater. Sci. Eng. 2016, Article ID 1280894 (2016)

  4. P. Lopez-Arce, M. Tagnit-Hammou, B. Menendez, J.D. Mertz, A. Kaci, Mater. Struct. 49, 5097 (2016)

    Article  Google Scholar 

  5. M.A. Khanfour, A. El Refai, Constr. Build. Mater. 145, 135 (2017)

    Article  Google Scholar 

  6. J. Koci, J. Madera, M. Keppert, R. Cerny, Cold Reg. Sci. Technol. 135, 1 (2017)

    Article  Google Scholar 

  7. ČSN 73 1322, Determination of Frost Resistance of Concrete (Czech Office for Standards, Metrology and Testing, Prague, 2003)

  8. ASTM C666/C666M-15, Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing (ASTM International, West Conshohocken, PA, 2015)

  9. M.J. Setzer, P. Heine, S. Kasparek, S. Palecki, R. Auberg, V. Feldrappe, E. Siebel, Mater. Struct. 37, 743 (2004)

    Article  Google Scholar 

  10. ČSN 72 2609, Methods of tests for masonry unitsSpecific properties of clay masonry units (Czech Office for Standards, Metrology and Testing, Prague, 2017)

  11. J. Brozovsky, Russ. J. Nondestruct. 50, 607 (2014)

    Article  Google Scholar 

  12. EN 12371, Natural stone test methods: Determination of frost resistance (European Committee for Standardization, 2010)

  13. EN 15304, Determination of the freeze-thaw resistance of autoclaved aerated concrete (European Committee for Standardization, 2010)

  14. N. Luodes, E. Panova, R. Bellopede, Environ. Earth Sci. 76, 328 (2017)

    Article  Google Scholar 

  15. B. Sena da Fonseca, A.P. Ferreira Pinto, S. Picarra, M.F. Montemor, Mater. Des. 120, 10 (2017)

    Article  Google Scholar 

  16. G. Bumanis, L. Vitola, D. Bajare, L. Dembovska, I. Pundiene, Ceram. Int. 43, 5471 (2017)

    Article  Google Scholar 

  17. N. Belayachi, D. Hoxha, M. Slaimia, Constr. Build. Mater. 125, 912 (2016)

    Article  Google Scholar 

  18. D. Nagockiene, G. Girskas, G. Skripkiunas, Constr. Build. Mater. 135, 37 (2017)

    Article  Google Scholar 

  19. J.P. Ingham, Q. J. Eng. Geol. Hydrog. 38, 387 (2005)

    Article  Google Scholar 

  20. J. Kočí, V. Kočí, J. Maděra, P. Rovnaníková, R. Černý, W.I.T. Trans, Eng. Sci. 68, 267 (2010)

    Google Scholar 

  21. J. Maděra, V. Kočí, J. Kočí, J. Výborný, R. Černý, W.I.T. Trans, Eng. Sci. 68, 291 (2010)

    Google Scholar 

  22. R. Černý, Complex System of Methods for Directed Design and Assessment of Functional Properties of Building Materials and Its Application (CTU Prague, Prague, 2013)

    Google Scholar 

  23. ČSN 73 0540-3, Thermal protection of buildings - Part 3: Design value quantities (Czech Office for Standards, Metrology and Testing, Prague, 2005)

  24. ISO 15927-4, Hygrothermal performance of buildingsCalculation and presentation of climatic dataPart 4: Hourly data for assessing the annual energy use for heating and cooling (ISO International Organisation for Standardization, 2005)

  25. R. Černý, Complex System of Methods for Directed Design and Assessment of Functional Properties of Building Materials: Assessment and Synthesis of Analytical Data and Construction of the System (CTU Prague, Prague, 2010)

    Google Scholar 

  26. J. Kruis, T. Koudelka, T. Krejčí, Math. Comput. Simul. 80, 1578 (2010)

    Article  Google Scholar 

  27. J. Maděra, J. Kočí, V. Kočí, J. Kruis, Adv. Eng. Softw. 113, 47 (2017)

    Article  Google Scholar 

  28. M. Jerman, M. Keppert, J. Výborný, R. Černý, Constr. Build. Mater. 41, 352 (2013)

    Article  Google Scholar 

  29. Z. Pavlík, R. Černý, Int. J. Thermophys. 33, 1704 (2012)

    Article  ADS  Google Scholar 

  30. M. Koniorczyk, D. Bednarska, Micropor. Mesopor. Mat. 250, 55 (2017)

    Article  Google Scholar 

  31. C. Wang, Y. Lai, M. Zhang, Appl. Therm. Eng. 124, 1049 (2017)

    Article  Google Scholar 

  32. P.J. Tikalsky, J. Pospisil, W. MacDonald, Cem. Concr. Res. 34, 889 (2004)

    Article  Google Scholar 

  33. C.S. Shon, D.G. Zollinger, A.E.R. Adv, Eng. Res. 29, 359 (2016)

    Google Scholar 

Download references

Acknowledgments

This research has been supported by the Czech Science Foundation, under Project No. 17-01365S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Václav Kočí.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kočí, V., Maděra, J., Jerman, M. et al. Experimental Determination of Frost Resistance of Autoclaved Aerated Concrete at Different Levels of Moisture Saturation. Int J Thermophys 39, 75 (2018). https://doi.org/10.1007/s10765-018-2398-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-018-2398-8

Keywords

Navigation