Skip to main content
Log in

Experimental Determination of Heat and Moisture Transport Properties of AAC in the Range of Subzero to Room Temperatures

  • 20th Symposium on Thermophysical Properties
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Thermal and hygric parameters of porous building materials are often determined as single values only. Neglecting their dependence on temperature and moisture can though lead to higher uncertainties in hygrothermal and energy-related calculations. In this paper, thermal conductivity, specific heat capacity, water vapor diffusion permeability and moisture diffusivity of autoclaved aerated concrete are measured as functions of both temperature and moisture in the ranges characteristic for their application in building structures. Experimental results show temperature as a very significant factor affecting all parameters, but its combination with moisture in different forms is even more important. The combined effects of temperature and moisture are most remarkable for thermal conductivity and moisture diffusivity, which can vary within a range of two orders of magnitude. The water vapor diffusion permeability increases with decreasing temperature despite the decreasing amount of water vapor diffused through the sample. The specific heat capacity increases continuously with both temperature and moisture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y.F. Pan, G.J. Xian, H. Li, J. Compos. Constr. 22, 04018011 (2018)

    Article  Google Scholar 

  2. A. Abdul Hamid, P. Wallentén, Build. Environ. 123, 351 (2017)

    Article  Google Scholar 

  3. H. Maljaee, B. Ghiassi, P.B. Lourenço, D.V. Oliveira, Compos. Struct. 147, 143 (2016)

    Article  Google Scholar 

  4. H. Xin, Y. Liu, A. Mosallam, Y. Zhang, C. Wang, Constr. Build. Mater. 127, 237 (2016)

    Article  Google Scholar 

  5. C. Feng, H. Janssen, Build. Environ. 99, 107 (2016)

    Article  Google Scholar 

  6. P.M. Patil, S. Roy, E. Momoniat, Int. J. Heat Mass Transf. 100, 428 (2016)

    Article  Google Scholar 

  7. Z. Pavlík, R. Černý, Int. J. Thermophys. 33, 1704 (2012)

    Article  ADS  Google Scholar 

  8. J. Carmeliet, H. Hens, S. Roels, O. Adan, H. Brocken, R. Černý, Z. Pavlík, C. Hall, K. Kumaran, L. Pel, J. Therm. Envelope Build. Sci. 27, 277 (2004)

    Article  Google Scholar 

  9. J. Kruis, T. Koudelka, T. Krejčí, Math. Comput. Simulat. 80, 1578 (2010)

    Article  Google Scholar 

  10. V. Kočí, J. Kočí, J. Maděra, Z. Pavlík, X. Gu, W. Zhang, R. Černý, J. Build. Phys. 41, 497 (2018)

    Article  Google Scholar 

  11. W. Tian, N. Han, Cold Reg. Sci. Technol. 151, 314 (2018)

    Article  Google Scholar 

  12. V. Kočí, J. Maděra, M. Jerman, R. Černý, Int. J. Thermophys. 39, 75 (2018)

    Article  ADS  Google Scholar 

  13. J.J. Beaudoin, C. MacInnis, Cem. Concr. Res. 4, 139 (1974)

    Article  Google Scholar 

  14. A. Trník, L. Scheinherrová, T. Kulovaná, P. Reiterman, E. Vejmelková, R. Černý, Fire Mater. 41, 54 (2017)

    Article  Google Scholar 

  15. A. Trník, I. Medveď, R. Černý, Cem. Wapno Beton 17, 363 (2012)

    Google Scholar 

  16. K. Zhou, L.H. Han, Eng. Struct. 165, 331 (2018)

    Article  Google Scholar 

  17. YTONG, product list (Xella Ltc, 2018), http://www.xella.cz/html/czk/cz/ytong-presne-tvarnice.php. Accessed 12 June 2018

  18. S. Roels, J. Carmeliet, H. Hens, O. Adan, H. Brocken, R. Černý, J. Therm. Envelope Build. Sci. 27, 307 (2004)

    Article  Google Scholar 

  19. J. Drchalová, R. Černý, Int. Commun. Heat Mass Transf. 25, 109 (1998)

    Article  Google Scholar 

  20. ISO/EIC 98-3:2008 Evaluation of measurement data—guide to the expression of uncertainty in measurements, Joint Committee for Guides in Metrology, France (2008)

  21. M. Jerman, M. Keppert, J. Výborný, R. Černý, Constr. Build. Mater. 41, 352 (2013)

    Article  Google Scholar 

  22. T.R. Marero, E.A. Mason, J. Phys. Chem. Ref. Data 1, 3 (1972)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

This research has been financially supported by the Czech Science Foundation, under project No. 17-01365S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kočí.

Additional information

Selected Papers of the 20th Symposium on Thermophysical Properties.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kočí, J., Maděra, J., Jerman, M. et al. Experimental Determination of Heat and Moisture Transport Properties of AAC in the Range of Subzero to Room Temperatures. Int J Thermophys 40, 2 (2019). https://doi.org/10.1007/s10765-018-2464-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-018-2464-2

Keywords

Navigation