Skip to main content
Log in

Elevated CO2 improves growth, modifies anatomy, and modulates essential oil qualitative production and gene expression in Lippia alba (Verbenaceae)

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Carbon dioxide (CO2) concentrations have grown in recent decades and will continue to increase during this century, affecting plant physiology and development. Aiming to evaluate the effect of CO2 elevation on growth, anatomy, essential oil qualitative production and expression of genes related to biosynthesis of these compounds, three chemotypes of Lippia alba (BGEN-01, BGEN-02 and BGEN-42) were cultivated in vitro. Firstly, we focused on the effects of gas exchange in the essential oil profile by comparing three CO2 exchange rates: 14, 21 and 25 µL L−1 s−1 CO2. Continuing, in addition to the previous 14 and 25 µL L−1 s−1 CO2 treatments, plants were placed into acrylic chambers with continuous forced air at 360 and 1000 μL L−1 of CO2; an additional control without allowing gas exchange was added inside the chambers, totaling five treatments with 6 replicates. After 45 days, essential oil profile, histochemical, stomatal density, growth evaluation analyses and transcript analysis were performed. The enrichment with CO2 enhanced plant dry and fresh weight, total chlorophylls and carotenoids in BGEN-01 and BGEN-02, and also increased stomatal density and lignin content for all chemotypes. The multivariate analysis showed that the essential oil profile varied, not only among the different chemotypes, but also within BGEN-01 and BGEN-02 treatments. The qualitative production was different in the treatments with forced air renovation and CO2 enrichment. Regarding the gene expression analyses, Farnesyl pyrophosphate synthase (LaFPPS) and Geranyl pyrophosphate synthase (LaGPPS) did not vary, except for the treatments with forced air ventilation (360 and 1000 µL L−1) in the BGEN-01, which had LaFPPS upregulated. Geraniol synthase (LaGES) was upregulated in all BGEN-02 treatments and for BGEN-01 treatments with 360 and 1000 µL L−1 CO2. Nerolidol/Linalool synthase (LaNES/LIS) was upregulated only in the BGEN-01, in the 360 and 1000 µL L−1 CO2 treatments. These findings provide a better understanding of how CO2 regulates secondary metabolites production, providing a basis to clarify the pathway regulation, further enabling the targeted production of essential oils with greater economic and industrial interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • AbdElgawad H, Peshev D, Zinta G, Van den Ende W, Janssens IA, Asard H (2014) Climate extreme effects on the chemical composition of temperate grassland species under ambient and elevated CO2: a comparison of fructan and non-fructan accumulators. PloS One 9(3):e92044

    Article  PubMed  PubMed Central  Google Scholar 

  • Adams RP (2007) Identification of essential oils components by gas chromatography/mass spectroscopy, (4 ed.) Carol Stream: Allured

  • Agência Nacional de Vigilância Sanitária (2010) Farmacopeia Brasileira. (5 ed.) Anvisa, Brasília, p. 198–199.

    Google Scholar 

  • Aguiar TV, Sant’anna-Santos BF, Azevedo AA, Ferreira RS (2007) ANATI QUANTI: software de análises quantitativas para estudos em anatomia vegetal. Planta Daninha 25:649–659

    Article  Google Scholar 

  • Aguiar JS, Costa MCCD, Nascimento SC, Sena KXFR (2008) Antimicobial activity of Lippia alba (Mill.) N. E. Brown (Verbenaceae). Rev Brasil Farmacogn 18:436–440

    Article  Google Scholar 

  • Aharoni A, Giri AP, Deuerlein S, Griepink F, de Kogel W-J, Verstappen FWA, Verhoeven HA, Jongsma MA, Schwab W, Bouwmeester HJ (2003) Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell 15:2866–2884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amorati R, Foti MC, Valgimigli L (2013) Antioxidant activity of essential oils. J Agric Food Chem 61:10835–10847

    Article  CAS  PubMed  Google Scholar 

  • Atarés L, Bonilla J, Chiralt A (2010) Characterization of sodium caseinate-based edible films incorporated with cinnamon or ginger essential oils. J Food Eng 100:678–687

    Article  Google Scholar 

  • Atkins S (2004) Verbenaceae. In: Kadereit JW (ed) The Families and genera of flowering plants, 7. Springer-Verlag, Berlin, pp 449–468

    Google Scholar 

  • Atkinson R, Arey J (2003) Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review. Atmospher Environ 37:197–219

    Article  Google Scholar 

  • Badr A, Angers P, Desjardins Y (2011) Metabolic profiling of photoautotrophic and photomixotrophic potato plantlets (Solanum tuberosum) provides new insights into acclimatization. Plant Cell Tiss Organ Cult 107:13–24

    Article  CAS  Google Scholar 

  • Badr A, Angers P, Desjardins Y (2015) Comprehensive analysis of in vitro to ex vitro transition of tissue cultured potato plantlets grown with or without sucrose using metabolic profiling technique. Plant Cell Tiss Organ Cult 122:491–508

    Article  CAS  Google Scholar 

  • Batista DS, Castro KM, Silva AR, Teixeira ML, Sales TA, Soares LI, Cardoso MG, Santos MO, Viccini LF, Otoni WC (2016) Light quality affects in vitro growth and essential oil profile in Lippia alba (Verbenaceae). In Vitro Cell Dev Biol Plant 52:276–282

    Article  CAS  Google Scholar 

  • Bencze S, Bamberger Z, Janda T, Balla K, Varga B, Bedő Z, Veisz O (2014) Physiological response of wheat varieties to elevated atmospheric CO2 and low water supply levels. Photosynthetica 52:71–82

    Article  CAS  Google Scholar 

  • Böhme K, Barros-Velázquez J, Calo-Mata P, Aubourg SP (2014) Antibacterial, antiviral and antifungal activity of essential oils: Mechanisms and applications. In: Villa TG, Veiga-Crespo P (eds) Antimicrobial compounds. Springer-Verlag, Berlin Heidelberg, pp 51–81

    Chapter  Google Scholar 

  • Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol 94:223–253

    Article  CAS  PubMed  Google Scholar 

  • Camurça-Vasconcelos ALF, Bevilaqua CML, Morais SM, Maciel MV, Costa CTC, Macedo ITF, Oliveira LMB, Braga RR, Silva RA, Vieira LS (2007) Anthelmintic activity of Croton zehntneri and Lippia sidoides essential oils. Vet Parasitol 148:288–294

    Article  PubMed  Google Scholar 

  • Chemat F, Maryline A-V, Xavier F (2013) Microwave-assisted extraction of essential oils and aromas. Microwave-assisted extraction for bioactive compounds. Springer, New York, pp 53–68

    Book  Google Scholar 

  • Dáder B, Fereres A, Moreno A, Trębicki P (2015) Elevated CO2 impacts bell pepper growth with consequences to Myzus persicae life history, feeding behaviour and virus transmission ability. Sci Rep 6:19120–19120

    Article  Google Scholar 

  • David R, Carde JP (1964) Coloration différentielle des inclusions lipidique et terpéniques dês pseudophylles du Pin maritime au moyen du réactif Nadi. Comp Rendus Acad Sci 258:1338–1340.

    CAS  Google Scholar 

  • David JP, Meira M, David JM, Brandão HN, Branco A, Agra MF, Barbosa MRV, Queiroz LP, Giulietti AM (2007) Radical scavenging, antioxidant and cytotoxic activity of Brazilian Caatinga plants. Fitoterapia 78:215–218

    Article  PubMed  Google Scholar 

  • Dewick PM (2002) The biosynthesis of C5–C25 terpenoid compounds. Nat Prod Rep 19:181–222

    Article  CAS  PubMed  Google Scholar 

  • Dong L, Jongedijk E, Bouwmeester H, Van Der Krol A (2016) Monoterpene biosynthesis potential of plant subcellular compartments. New Phytol 209:679–690

    Article  CAS  PubMed  Google Scholar 

  • Fontenelle ROS, Morais SM, Brito EHS, Kerntopf MR, Brilhante RSN, Cordeiro RA, Tomé AR, Queiroz MGR, Nascimento NRF, Sidrim JJC, Rocha MFG (2007) Chemical composition, toxicological aspects and antifungal activity of essential oil from Lippia sidoides. J Antimicrob Chemoth Adv Access 59:934–940

    Article  CAS  Google Scholar 

  • Friendly M, Fox J (2013) Visualizing generalized canonical discriminant and canonical correlation analysis. Documentation for R Package “candisc”, version 0.6–5 http://CRAN.R-project.org/package=candisc

  • Gandhi SG, Mahajan V, Bedi YS (2015) Changing trends in biotechnology of secondary metabolism in medicinal and aromatic plants. Planta 241:303–317

    Article  CAS  PubMed  Google Scholar 

  • Ghasemzadeh A, Jaafar HZE (2011) Effect of CO2 enrichment on synthesis of some primary and secondary metabolites in ginger (Zingiber officinale Roscoe). Int J Mol Sci 12:1101–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haworth M, Elliott-Kingston C, McElwain JC (2013) Co-ordination of physiological and morphological responses of stomata to elevated [CO2] in vascular plants. Oecologia 171:71–82

    Article  PubMed  Google Scholar 

  • Hennebelle T, Sahpaz S, Joseph H, Bailleul F (2008) Ethnopharmacology of Lippia alba. J Ethnopharm 116:211–222

    Article  CAS  Google Scholar 

  • Hyldgaard M, Tina M, Rikke LM (2012) Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Front Microbiol 12:36–59

    Google Scholar 

  • Iarema L, Cruz ACF, Saldanha CW, Dias LLC, Vieira RF, Oliveira EJ, Otoni WC (2012) Photoautotrophic propagation of Brazilian ginseng [Pfaffia glomerata (Spreng.) Pedersen]. Plant Cell Tiss Organ Cult 110:227–238

    Article  Google Scholar 

  • Ibrahim MH, Jaafar HZ (2012) Impact of elevated carbon dioxide on primary, secondary metabolites and antioxidant responses of Eleais guineensis Jacq.(Oil Palm) seedlings. Molecules 17:5195–5211

    Article  CAS  PubMed  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2007) Summary for Policymakers. In: Solomon SD, Qin M, Manning Z, Chen M, Marquis KB, Averyt MT, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York, p 1–18

    Chapter  Google Scholar 

  • Jain MS, Saxena PK (2009) Protocols for in vitro cultures and secondary metabolite analysis of aromatic and medicinal plants. Humana Press, New York

    Book  Google Scholar 

  • Johansen DA (1940) Plant microtechnique. McGraw-Hill Book, New York

    Google Scholar 

  • Kang JH, KrishnaKumar S, Atulba SLS, Jeong BR, Hwang SJ (2013) Light intensity and photoperiod influence the growth and development of hydroponically grown leaf lettuce in a closed-type plant factory system. Hortic Environ Biotechnol 54:501–509

    Article  CAS  Google Scholar 

  • Klaiber J, Najar-Rodriguez AJ, Piskorski R, Dorn S (2013) Plant acclimation to elevated CO2 affects important plant functional traits, and concomitantly reduces plant colonization rates by an herbivorous insect. Planta 237:29–42

    Article  CAS  PubMed  Google Scholar 

  • Kontunen-Soppela S, Riikonen J, Ruhanen H, Brosché M, Somervuo P, Peltonen P, Kangasjärvi J, Auvinen P, Paulin L, Keinänen M, Oksanen E, Vapaavuori E (2010) Differential gene expression in senescing leaves of two silver birch genotypes in response to elevated CO2 and tropospheric ozone. Plant Cell Environ 33:1016–1028

    Article  CAS  PubMed  Google Scholar 

  • Kozai T (2010) Photoautotrophic micropropagation—environmental control for promoting photosynthesis. Prop Ornam Plants 10:188–204

    Google Scholar 

  • Lavola A, Julkunen-Tiitto R (1994) The effect of elevated carbon dioxide and fertilization on primary and secondary metabolites in birch, Betula pendula (Roth). Oecologia 99:315–321

    Article  Google Scholar 

  • Levine LH, Kasahara H, Kopka J, Erban A, Fehrl I, Kaplan F, Zhao W, Littell RC, Guy C, Wheeler R, Sager J, Mills A, Levine HG (2008) Physiologic and metabolic responses of wheat seedlings to elevated and super-elevated carbon dioxide. Adv Space Res 42:1917–1928

    Article  CAS  Google Scholar 

  • Li P, Ainsworth EA, Leakey AD, Ulanov A, Lozovaya V, Ort DR, Bohnert HJ (2008) Arabidopsis transcript and metabolite profiles: ecotype-specific responses to open-air elevated [CO2]. Plant Cell Environ 31:1673–1687

    Article  PubMed  Google Scholar 

  • Llana-Ruiz-Cabello M, Pichardo S, Maisanaba S, Puerto M, Prieto AI, Gutiérrez-Praena D, Jos A, Cameán AM (2015) In vitro toxicological evaluation of essential oils and their main compounds used in active food packaging: a review. Food Chem Toxicol 81:9–27

    Article  CAS  PubMed  Google Scholar 

  • Mamatha H, Rao NS, Laxman RH, Shivashankara KS, Bhatt RM, Pavithra KC (2014) Impact of elevated CO2 on growth, physiology, yield, and quality of tomato (Lycopersicon esculentum Mill) cv. ArkaAshish. Photosynthetica 52:519–528

    Article  CAS  Google Scholar 

  • Martin DM, Chiang A, Lund ST, Bohlmann J (2012) Biosynthesis of wine aroma: transcript profiles of hydroxymethylbutenyldiphosphatereductase, geranyldiphosphate synthase, and linalool/nerolidol synthase parallel monoterpenol glycoside accumulation in Gewürztraminer grapes. Planta 236:919–929

    Article  CAS  PubMed  Google Scholar 

  • May P, Liao W, Wu Y, Shuai B, McCombie WR, Zhang MQ, Liu QA (2013) The effects of carbon dioxide and temperature on microRNA expression in Arabidopsis development. Nat Commun 4:1–11

    Article  Google Scholar 

  • McAdam SAM, Brodribb TJ (2012) Stomatal innovation and the rise of seed plants. Ecol Lett 15:1–8

    Article  PubMed  Google Scholar 

  • Misra BB, Chen S (2015) Advances in understanding CO2 responsive plant metabolomes in the era of climate change. Metabolomics 11:1478–1491

    Article  CAS  Google Scholar 

  • Mjos SA, Meier S, Boitsov S (2006) Alkylphenol retention indices. J Chromatogr 1123:98–105

    Article  CAS  Google Scholar 

  • Mohamed MAH, Ibrahim TA (2012) Enhanced in vitro production of Ruta graveolens L. coumarins and rutin by mannitol and ventilation. Plant Cell Tiss Organ Cult 111:335–343

    Article  CAS  Google Scholar 

  • Mosaleeyanon K, Chan-Um S, Kirmanee C (2004) Enhanced growth and photosynthesis of rain tree (Samanea saman Merr.) plantlets in vitro under a CO2-enriched condition with decreased sucrose concentrations in the medium. Sci Hortic 103:51–63

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Ncube B, Baskaran P, Van Staden J (2015) Transition from in vitro to an ex vitro environment: is the metabolism altered? In Vitro Cell Dev Biol Plant 51:166–173

    Article  CAS  Google Scholar 

  • Oehme V, Högy P, Zebitz CPW, Fangmeier A (2013) Effects of elevated atmospheric CO2 concentrations on phloem sap composition of spring crops and aphid performance. J Plant Interact 8:74–84

    Article  CAS  Google Scholar 

  • Otoni CG, Pontes SFO, Medeiros EAA, Soares NFF (2014) Edible films from methylcellulose and nanoemulsions of clove bud (Syzygium aromaticum) and Oregano (Origanum vulgare) essential oils as shelf life extenders for sliced bread. J Agric Food Chem 62:5214–5219

    Article  CAS  PubMed  Google Scholar 

  • Otoni CG, McHugh TH, Avena-Bustillos RJ, Olsen CW, Bilbao-Sainz C (2016) Mechanical and water barrier properties of isolated soy protein composite edible films as affected by carvacrol and cinnamaldehyde micro and nanoemulsions. Food Hydrocolloid 57:72–79

    Article  CAS  Google Scholar 

  • Pacheco FV, Avelar RP, Alvarenga ICA, Bertolucci SKV, Alvarenga AA, Pinto JEBP (2016) Essential oil of monkey-pepper (Piper aduncum L.) cultivated under different light environments. Ind Crop Prod 85:251–257

    Article  CAS  Google Scholar 

  • Pascual ME, Slowing K, Carretero E, Sánches Mata D, Villar A (2001) Lippia: traditional uses, chemistry and pharmacology: a review. J Ethnopharm 76:201–214

    Article  CAS  Google Scholar 

  • Peng Y, Li Y (2014) Combined effects of two kinds of essential oils on physical, mechanical and structural properties of chitosan films. Food Hydrocolloid 36:287–293

    Article  CAS  Google Scholar 

  • Pereira AA, Cardoso MG, Abreu LR, Morais AR, Guimarães LGL, Salgado APSP (2008) Caracterização química e efeito inibitório de óleos essenciais sobre o crescimento de Staphylococcus aureus e Escherichia coli. Ciência Agrotécnica 32:887–893

    Article  CAS  Google Scholar 

  • Pérez-Jiménez M, López-Pérez AJ, Otálora-Alcón G, Marín-Nicolás D, Piñero MC, del Amor FM (2015) A regime of high CO2 concentration improves the acclimatization process and increases plant quality and survival. Plant Cell Tiss Organ Cult 121:547–557

    Article  Google Scholar 

  • Proestos C, Lytoudi K, Mavromelanidou OK, Zoumpoulakis P, Sinanoglou VJ (2013) Antioxidant capacity of selected plant extracts and their essential oils. Antioxidants 2:11–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ramirez-Estrada K, Vidal-Limon H, Hidalgo D, Moyano E, Golenioswki M, Cusidó RM, Palazon J (2016) Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories: review. Molecules 21:182. doi:10.3390/molecules21020182

    Article  PubMed  Google Scholar 

  • Reis AC, Sousa SM, Vale AA, Pierre PMO, Franco AL, Campos JMS, Vieira RF, Viccini LF (2014) Lippia alba (Mill.) N. E. Br. (Verbenaceae): a new tropical autopolyploid complex? Am J Bot 101:1002–1012

    Article  PubMed  Google Scholar 

  • Richet N, Afif D, Tozo K, Pollet B, Maillard P, Huber F, Priault P, Banvoy J, Gross P, Dizengremel P, Lapierre C (2012) Elevated CO2 and/or ozone modify lignification in the wood of poplars (Populus tremula x alba). J Exp Bot 63:4291–4301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodziewicz P, Swarcewicz B, Chmielewska K, Wojakowska A, Stobiecki M (2014) Influence of abiotic stresses on plant proteome and metabolome changes. Acta Physiol Plant 36:1–19

    Article  CAS  Google Scholar 

  • Saldanha CW, Otoni CG, Notini MM, Kuki KN, Cruz ACF, Rubio Neto A, Dias LLC, Otoni WC (2013) A CO2-enriched atmosphere improves in vitro growth of Brazilian ginseng [Pfaffia glomerata (Spreng.) Pedersen]. In Vitro Cell Dev Biol Plant 49:433–444

    Article  CAS  Google Scholar 

  • Saldanha CW, Otoni CG, Rocha DI, Cavatte PC, Detmann KDSC, Tanaka FAO, Dias LLC, DaMatta FM, Otoni WC (2014) CO2-enriched atmosphere and supporting material impact the growth, morphophysiology and ultrastructure of in vitro Brazilian-ginseng [Pfaffia glomerata (Spreng.) Pedersen] plantlets. Plant Cell Tiss Organ Cult 118:87–99

    Article  CAS  Google Scholar 

  • Schilmiller AL, Pichersky E, Last RL (2012) Taming the hydra of specialized metabolism: how systems biology and comparative approaches are revolutionizing plant biochemistry. Curr Opin Plant Biol 15:338–344

    Article  CAS  PubMed  Google Scholar 

  • Scott RJ, Knott M (1974) A cluster analysis method for grouping mans in the analysis of variance. Biometrics 30:507–512

    Article  Google Scholar 

  • Singulani JL, Silva PS, Raposo NRB, Siqueira EP, Zani CL, Alves TMA, Viccini LF (2012) Chemical composition and antioxidant activity of Lippia species. J Med Plants Res 6:4416–4422

    CAS  Google Scholar 

  • Springer CJ, Orozco RA, Kelly JK, Ward JK (2008) Elevated CO2 influences the expression of floral-initiation genes in Arabidopsis thaliana. New Phytol 178:243–255

    Article  Google Scholar 

  • Supaibulwattana K, Kuntawunginn W, Cha-um S, Kirdmanee C (2012) Artemisinin accumulation and enhanced net photosynthetic rate in Qinghao (Artemisia annua L.) hardened in vitro in enriched-CO2 photoautotrophic conditions. Plant Omics 4:75–81

    Google Scholar 

  • Szczepanski S, Lipski A (2014) Essential oils show specific inhibiting effects on bacterial biofilm formation. Food Control 36:224–229

    Article  CAS  Google Scholar 

  • Torres E, Lopez N (2007) Phenotypic plasticity of Lippia alba and Lippia origanoides (Verbenaceae) in response to availability of light. Acta Biol Colombiana 12:91–102

    Google Scholar 

  • Turek C, Stintzing FC (2013) Stability of essential oils: a review. Comp Rev Food Sci Food Safety 12:40–53

    Article  CAS  Google Scholar 

  • Valdés A, Mellinas AC, Ramos M, Burgos N, Jiménez A, Garrigós MS (2015) Use of herbs, spices and their bioactive compounds in active food packaging. Royal Soc Chem Adv 5:40324–40335

    Google Scholar 

  • Viccini LF, Silveira RS, do Vale AA, de Campos JMS, Reis AC, Santos MO, Campos VR, Carpanez AG, Grazul RM (2014) Citral and linalool content has been correlated to DNA content in Lippia alba (Mill.) NE Brown (Verbenaceae). Ind Crop Prod 59:14–19

    Article  CAS  Google Scholar 

  • Walker AP, Zaehle S, Medlyn BE, De Kauwe MG, Asao S, Hickler T, Parton W, Ricciuto DM, Wang Y-P, Wårlind D, Norby RJ (2015) Predicting long-term carbon sequestration in response to CO2 enrichment: How and why do current ecosystem models differ? Global Biogeochem Cycles 29:476–495

    Article  CAS  Google Scholar 

  • Wang M, Liu H, Dong C, Fu Y, Liu H (2016) Elevated CO2 enhance photosynthetic efficiency, ions uptake and antioxidant activity of Gynura bicolor DC. Grown porous-tube nutrient delivery system under simulated microgravity. Plant Biol 18:391–399

    Article  CAS  PubMed  Google Scholar 

  • Werker E (2000) Trichome diversity and development. Adv Bot Res 31:1–35

    Article  Google Scholar 

  • Woodward FI (1987) Stomatal numbers are sensitive to increases in CO2 from preindustrial levels. Nature 327:617–618

    Article  Google Scholar 

  • Xiao Y, Niu G, Kozai T (2011) Development and application of photoautotrophic micropropagation plant system. Plant Cell Tiss Organ Cult 105:149–158

    Article  CAS  Google Scholar 

  • Yang W, Cho HS, Kim M, Seong KY, Park TS, Seo MC, Kang HW (2013) Re-examination of the standard cultivation practices of rice in response to climate change in Korea. J Crop Sci Biotechnol 16:85–92

    Article  Google Scholar 

  • Yeater KM, Duke SE, Riedell WE (2015) Multivariate analysis: greater insights into complex systems. Agron J 107:799–810

    Article  Google Scholar 

  • Yuan JS, Reed A, Chen F, Stewart Jr CN (2006) Statistical analysis of real-time PCR data. BMC Bioinform 7:85

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Brazilian sponsoring agencies, CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil), FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais), and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior), for financial support. We also acknowledge the Gas Chromatography Mass Spectrometry Laboratory—CGMSLab, CAPQ/UFLA for the qualitative analyses of essential oils.

Author contributions

DSB, KMC, ADK, BNP, VCS and MGC conceived, designed and performed the experiments; DSB and KMC raised the in vitro plants for the experiments; MLT, TAS, LIS, DSB, and MGC performed essential oil extractions and analyses; DSB, ARS, MOS, LFV, MGC, and WCO contributed to the design and interpretation of the research and to the writing of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wagner Campos Otoni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batista, D.S., de Castro, K.M., Koehler, A.D. et al. Elevated CO2 improves growth, modifies anatomy, and modulates essential oil qualitative production and gene expression in Lippia alba (Verbenaceae). Plant Cell Tiss Organ Cult 128, 357–368 (2017). https://doi.org/10.1007/s11240-016-1115-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-016-1115-1

Keywords

Navigation