Skip to main content
Log in

Plant acclimation to elevated CO2 affects important plant functional traits, and concomitantly reduces plant colonization rates by an herbivorous insect

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Plants growing under elevated CO2 concentration may acclimatize to this environmental change by modification of chemical, physiological, and/or morphological traits. As a consequence, not only plant functioning but also plant–insect interactions might be altered, with important consequences particularly for agricultural systems. Whereas most studies have focused on the plant acclimation effects of elevated CO2 with regard to crop growth and productivity, acclimation effects on the behavioral response of insects associated with these plants have been largely neglected. In this study, we used a model system comprised of Brussels sprout Brassica oleraceae var. gemmifera and a specialized herbivorous insect, the cabbage aphid Brevicoryne brassicae, to test for the effects of various periods of exposure to an elevated (2× ambient) CO2 concentration on key plant functional traits and on host plant location behavior by the insect, assessed as plant colonization rates. Elevated CO2 had no measurable effect on colonization rates or total plant volatile emissions after a 2-week exposure, but it led to 15 and 26 % reductions in plant colonization rates after 6- and 10-week exposures, respectively. This reduction in plant colonization was associated with significant decreases in leaf stomatal conductance and plant volatile emission. Terpene emission, in particular, exhibited a great reduction after the 10-week exposure to elevated CO2. Our results provide empirical evidence that plants might acclimatize to a future increase in CO2, and that these acclimation responses might affect host plant choice and colonization behavior by herbivorous insects, which might be advantageous from the plant’s perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams R (1995) Identification of essential oil components by gas chromatography/mass spectrometry. Allured Publishing Corporation, IL

    Google Scholar 

  • Agrell J, Anderson P, Oleszek W, Stochmal A, Agrell C (2006) Elevated CO2 levels and herbivore damage alter host plant preferences. Oikos 112:63–72

    Article  Google Scholar 

  • Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 30:258–270

    Article  PubMed  CAS  Google Scholar 

  • Andalo C, Raquin C, Machon N, Godelle B, Mousseau M (1998) Direct and maternal effects of elevated CO2 on early root growth of germinating Arabidopsis thaliana seedlings. Ann Bot 81:405–411

    Article  Google Scholar 

  • Arimura G, Matsui K, Takabayashi J (2009) Chemical and molecular ecology of herbivore-induced plant volatiles: proximate factors and their ultimate functions. Plant Cell Physiol 50:911–923

    Article  PubMed  CAS  Google Scholar 

  • Asshoff R, Zotz G, Körner C (2006) Growth and phenology of mature temperate forest trees in elevated CO2. Glob Change Biol 12:848–861

    Article  Google Scholar 

  • Beerling DJ, Chaloner WG, Huntley B, Pearson JA, Tooley MJ, Woodward FI (1992) Variations in the stomatal density of Salix herbacea L. under the changing atmospheric CO2 concentrations of late- and postglacial time. Phil Trans R Soc Lond B 336:215–224

    Article  Google Scholar 

  • Bernasconi ML, Turlings TCJ, Ambrosetti L, Bassetti P, Dorn S (1998) Herbivore-induced emissions of maize volatiles repel the corn leaf aphid, Rhopalosiphum maidis. Entomol Exp Appl 87:133–142

    Article  CAS  Google Scholar 

  • Blackman RL, Eastop VF (1990) Specificity in aphid/plant genetic interactions, with particular attention to the role of the alate colonizer. In: Campbell RK, Eikenbary RD (eds) Aphid–plant genotype interactions. Elsevier, Amsterdam, pp 251–274

    Google Scholar 

  • Blackman RL, Eastop VF (2000) Aphids on the world’s crops, an identification and information guide. The Natural History Museum, London

    Google Scholar 

  • Brodribb TJ, McAdam SAM, Jordan GJ, Feild TS (2009) Evolution of stomatal responsiveness to CO2 and optimization of water-use efficiency among land plants. New Phytol 183:839–847

    Article  PubMed  Google Scholar 

  • Bruce TJA, Wadhams LJ, Woodcock CM (2005) Insect host location: a volatile situation. Trends Plant Sci 10:269–274

    Article  PubMed  CAS  Google Scholar 

  • Caillaud MC (1999) Behavioural correlates of genetic divergence due to host specialization in the pea aphid, Acyrthosiphon pisum. Entomol Exp Appl 91:227–232

    Article  Google Scholar 

  • Clément M, Arzel S, Le Bot B, Seux R, Millet M (2000) Adsorption/thermal desorption-GC/MS for the analysis of pesticides in the atmosphere. Chemosphere 40:49–56

    Article  PubMed  Google Scholar 

  • Coley PD, Massa M, Lovelock CE, Winter K (2002) Effects of elevated CO2 on foliar chemistry of saplings of nine species of tropical tree. Oecologia 133:62–69

    Article  Google Scholar 

  • Constable JVH, Litvak ME, Greenberg JP, Monson RK (1999) Monoterpene emission from coniferous trees in response to elevated CO2 concentration and climate warming. Glob Change Biol 5:255–267

    Google Scholar 

  • Cornelissen T (2011) Climate change and its effects on terrestrial insects and herbivory patterns. Neotropical Entomol 40:155–163

    Article  CAS  Google Scholar 

  • de Boer HJ, Lammertsma EI, Wagner-Cremer F, Dilcher DL, Wassen MJ, Dekker SC (2011) Climate forcing due to optimization of maximal leaf conductance in subtropical vegetation under rising CO2. Proc Natl Acad Sci USA 108:4041–4046

    Article  PubMed  Google Scholar 

  • Dewulf J, Van Langenhove H, Everaert P (1999) Determination of Henry’s law coefficients by combination of the equilibrium partitioning in closed systems and solid-phase microextraction techniques. J Chromatogr A 830:353–363

    Article  CAS  Google Scholar 

  • Dicke M (2000) Chemical ecology of host-plant selection by herbivorous arthropods: a multitrophic perspective. Biochem System Ecol 28:601–617

    Article  CAS  Google Scholar 

  • Dixon AFG (1998) Aphid ecology. Chapman and Hall, London

    Google Scholar 

  • Drewry DT, Kumar P, Long S, Bernacchi C, Liang XZ, Sivapalan M (2010) Ecohydrological responses of dense canopies to environmental variability: 2. Role of acclimation under elevated CO2. J Geophys Res Biogeosci 115:G04023

    Google Scholar 

  • Dudareva N, Pichersky E (2008) Metabolic engineering of plant volatiles. Curr Opin Biotechnol 19:181–189

    Article  PubMed  CAS  Google Scholar 

  • Dudareva N, Negre F, Nagegowda DA, Orlova I (2006) Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci 25:417–440

    Article  CAS  Google Scholar 

  • Eigenbrode SD, Espelie KE (1995) Effects of plant epicuticular lipids on insect herbivores. Annu Rev Entomol 40:171–194

    Article  Google Scholar 

  • Forsberg J (1987) Size discrimination among conspecific hostplants in two pierid butterflies—Pieris napi L. and Pontia daplidice L. Oecologia 72:52–57

    Article  Google Scholar 

  • Frenck G, van der Linden L, Mikkelsen TN, Brix H, Jørgensen RB (2011) Increased [CO2] does not compensate for negative effects on yield caused by higher temperature and [O3] in Brassica napus L. Eur J Agron 35:127–134

    Article  Google Scholar 

  • Gallego E, Roca FJ, Perales JF, Guardino X (2011) Comparative study of the adsorption performance of an active multi-sorbent bed tube (Carbotrap, Carbopack X, Carboxen 569) and a Radiello (R) diffusive sampler for the analysis of VOCs. Talanta 85:662–672

    Article  PubMed  CAS  Google Scholar 

  • Griffiths DW, Deighton N, Birch ANE, Patrian B, Baur R, Stadler E (2001) Identification of glucosinolates on the leaf surface of plants from the Cruciferae and other closely related species. Phytochemistry 57:693–700

    Article  PubMed  CAS  Google Scholar 

  • Gu H, Dorn S (2000) Genetic variation in behavioral response to herbivore-infested plants in the parasitic wasp, Cotesia glomerata (L.) (Hymenoptera: Braconidae). J Insect Behav 13:141–156

    Article  Google Scholar 

  • Guenther A, Hewitt CN, Erickson D et al (1995) A global-model of natural volatile organic-compound emissions. J Geophys Res Atm 100:8873–8892

    Article  CAS  Google Scholar 

  • Gutbrodt B, Mody K, Dorn S (2011) Drought changes plant chemistry and causes contrasting responses in lepidopteran herbivores. Oikos 120:1732–1740

    Article  CAS  Google Scholar 

  • Hattendorf J, Hansen SO, Reznik SY, Nentwig W (2006) Herbivore impact versus host size preference: endophagous insects on Heracleum mantegazzianum in its native range. Environ Entomol 35:1013–1020

    Article  Google Scholar 

  • Himanen SJ, Nissinen A, Dong WX, Nerg AM, Stewart CN, Poppy GM, Holopainen JK (2008) Interactions of elevated carbon dioxide and temperature with aphid feeding on transgenic oilseed rape: Are Bacillus thuringiensis (Bt) plants more susceptible to nontarget herbivores in future climate? Glob Change Biol 14:1437–1454

    Article  Google Scholar 

  • Himanen SJ, Nerg AM, Nissinen A, Pinto DM, Stewart CN, Poppy GM, Holopainen JK (2009) Effects of elevated carbon dioxide and ozone on volatile terpenoid emissions and multitrophic communication of transgenic insecticidal oilseed rape (Brassica napus). New Phytol 181:174–186

    Article  PubMed  CAS  Google Scholar 

  • Houghton J, Ding Y, Griggs D et al (2001) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Kolattukudy PE, Buckner JS, Liu TYJ (1973) Biosynthesis of secondary alcohols and ketones from alkanes. Arch Biochem Biophys 156:613–620

    Article  PubMed  CAS  Google Scholar 

  • Kopper BJ, Lindroth RL (2003) Responses of trembling aspen (Populus tremuloides) phytochemistry and aspen blotch leafminer (Phyllonorycter tremuloidiella) performance to elevated levels of atmospheric CO2 and O3. Agric For Entomol 5:17–26

    Article  Google Scholar 

  • Lammertsma EI, de Boer HJ, Dekker SC, Dilcher DL, Lotter AF, Wagner-Cremer F (2011) Global CO2 rise leads to reduced maximum stomatal conductance in Florida vegetation. Proc Natl Acad Sci USA 108:4035–4040

    Article  PubMed  CAS  Google Scholar 

  • Lincoln DE, Couvet D (1989) The effect of carbon supply on allocation to allelochemicals and caterpillar consumption of peppermint. Oecologia 78:112–114

    Article  Google Scholar 

  • Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants face the future. Annu Rev Plant Biol 55:591–628

    Article  PubMed  CAS  Google Scholar 

  • Loreto F, Fischbach RJ, Schnitzler JP et al (2001) Monoterpene emission and monoterpene synthase activities in the Mediterranean evergreen oak Quercus ilex L. grown at elevated CO2 concentrations. Glob Change Biol 7:709–717

    Article  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    Article  PubMed  CAS  Google Scholar 

  • Najar-Rodriguez AJ, McGraw EA, Hull CD, Mensah RK, Walter GH (2009) The ecological differentiation of asexual lineages of cotton aphids: alate behaviour, sensory physiology, and differential host associations. Biol J Linn Soc 97:503–519

    Article  Google Scholar 

  • Netting AG, Macey MJK (1971) Composition of ketones and secondary alcohols from Brassica oleracea waxes. Phytochemistry 10:1917–1920

    Article  CAS  Google Scholar 

  • Newton E, Bullock JM, Hodgson D (2010) Temporal consistency in herbivore responses to glucosinolate polymorphism in populations of wild cabbage (Brassica oleracea). Oecologia 164:689–699

    Article  PubMed  Google Scholar 

  • Niinemets U, Loreto F, Reichstein M (2004) Physiological and physicochemical controls on foliar volatile organic compound emissions. Trends Plant Sci 9:180–186

    Article  PubMed  CAS  Google Scholar 

  • Nottingham SF, Hardie J, Dawson GW et al (1991) Behavioral and electrophysiological responses of aphids to host and nonhost plant volatiles. J Chem Ecol 17:1231–1242

    Article  CAS  Google Scholar 

  • O’Neill BF, Delucia EH, Zangerl AB, Berenbaum MR (2010) Olfactory preferences of Popillia japonica, Vanessa cardui, and Aphis glycines for Glycine max grown under elevated CO2. Environ Entomol 39:1291–1301

    Article  PubMed  Google Scholar 

  • Otera M, Kokubun M, Tabei H, Matsunami T, Maekawa T, Okada M (2011) Is yield enhancement by CO2 enrichment greater in genotypes with a higher capacity for nitrogen fixation? Agric For Meteorol 151:1385–1393

    Article  Google Scholar 

  • Owen SM, Boissard C, Hewitt CN (2001) Volatile organic compounds (VOCs) emitted from 40 Mediterranean plant species: VOC speciation and extrapolation to habitat scale. Atmos Environ 35:5393–5409

    Article  CAS  Google Scholar 

  • Peñuelas J, Llusia J (1997) Effects of carbon dioxide, water supply, and seasonality on terpene content and emission by Rosmarinus officinalis. J Chem Ecol 23:979–993

    Article  Google Scholar 

  • Peñuelas J, Staudt M (2010) BVOCs and global change. Trends Plant Sci 15:133–144

    Article  PubMed  Google Scholar 

  • Pickett JA, Wadhams LJ, Woodcock CM, Hardie J (1992) The chemical ecology of aphids. Annu Rev Entomol 37:67–90

    Article  CAS  Google Scholar 

  • Piskorski R, Dorn S (2010) Early-season headspace volatiles from apple and their effect on the apple blossom weevil Anthonomus pomorum. Chem Biodivers 7:2254–2260

    Article  PubMed  CAS  Google Scholar 

  • Piskorski R, Kroder S, Dorn S (2011) Can pollen headspace volatiles and pollenkitt lipids serve as reliable chemical cues for bee pollinators? Chem Biodivers 8:577–586

    Article  PubMed  CAS  Google Scholar 

  • Possell M, Hewitt CN, Beerling DJ (2005) The effects of glacial atmospheric CO2 concentrations and climate on isoprene emissions by vascular plants. Glob Change Biol 11:60–69

    Article  Google Scholar 

  • Prokopy RJ, Owens ED (1983) Visual detection of plants by herbivorous insects. Annu Rev Entomol 28:337–364

    Article  Google Scholar 

  • Räisänen T, Ryyppö A, Kellomäki S (2008) Effects of elevated CO2 and temperature on monoterpene emission of Scots pine (Pinus sylvestris L.). Atmos Environ 42:4160–4171

    Article  Google Scholar 

  • Reddy GVP, Tossavainen P, Nerg AM, Holopainen JK (2004) Elevated atmospheric CO2 affects the chemical quality of Brassica plants and the growth rate of the specialist, Plutella xylostella, but not the generalist, Spodoptera littoralis. J Agric Food Chem 52:4185–4191

    Article  PubMed  CAS  Google Scholar 

  • Riikonen J, Percy KE, Kivimaenpaa M, Kubiske ME, Nelson ND, Vapaavuori E, Karnosky DF (2010) Leaf size and surface characteristics of Betula papyrifera exposed to elevated CO2 and O3. Environ Pollut 158:1029–1035

    Article  PubMed  CAS  Google Scholar 

  • Rosenstiel TN, Potosnak MJ, Griffin KL, Fall R, Monson RK (2003) Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem. Nature 421:256–259

    Article  PubMed  CAS  Google Scholar 

  • Scascighini N, Mattiacci L, D’Alessandro M, Hern A, Rott AS, Dorn S (2005) New insights in analysing parasitoid attracting synomones: early volatile emission and use of stir bar sorptive extraction. Chemoecology 15:97–104

    Article  Google Scholar 

  • Scholefield PA, Doick KJ, Herbert BMJ et al (2004) Impact of rising CO2 on emissions of volatile organic compounds: isoprene emission from Phragmites australis growing at elevated CO2 in a natural carbon dioxide spring. Plant Cell Environ 27:393–401

    Article  CAS  Google Scholar 

  • Sharkey AG, Shultz JL, Friedel RA (1956) Mass spectra of ketones. Anal Chem 28:934–940

    Article  CAS  Google Scholar 

  • Sharkey AG, Friedel RA, Langer SH (1957) Mass spectra of trimethylsilyl derivatives. Anal Chem 29:770–776

    Article  CAS  Google Scholar 

  • Singh J, Upadhyay AK, Bahadur A, Singh B, Singh KP, Rai M (2006) Antioxidant phytochemicals in cabbage (Brassica oleracea L. var. capitata). Sci Hortic 108:233–237

    Article  CAS  Google Scholar 

  • Stiling P, Cornelissen T (2007) How does elevated carbon dioxide (CO2) affect plant-herbivore interactions? A field experiment and meta-analysis of CO2-mediated changes on plant chemistry and herbivore performance. Glob Change Biol 13:1823–1842

    Article  Google Scholar 

  • Sun YC, Su JW, Ge F (2010) Elevated CO2 reduces the response of Sitobion avenae (Homoptera: Aphididae) to alarm pheromone. Agric Ecosyst Environ 135:140–147

    Article  CAS  Google Scholar 

  • Thammakhet C, Muneesawang V, Thavarungkul P, Kanatharana P (2006) Cost effective passive sampling device for volatile organic compounds monitoring. Atmos Environ 40:4589–4596

    Article  CAS  Google Scholar 

  • Tholl D, Boland W, Hansel A, Loreto F, Röse USR, Schnitzler JP (2006) Practical approaches to plant volatile analysis. Plant J 45:540–560

    Article  PubMed  CAS  Google Scholar 

  • Vallat A, Dorn S (2005) Changes in volatile emissions from apple trees and associated response of adult female codling moths over the fruit-growing season. J Agric Food Chem 53:4083–4090

    Article  PubMed  CAS  Google Scholar 

  • Velikova V, Tsonev T, Barta C et al (2009) BVOC emissions, photosynthetic characteristics and changes in chloroplast ultrastructure of Platanus orientalis L. exposed to elevated CO2 and high temperature. Environ Pollut 157:2629–2637

    Article  PubMed  CAS  Google Scholar 

  • Verhoeven KJF, Simonsen KL, McIntyre LM (2005) Implementing false discovery rate control: increasing your power. Oikos 108:643–647

    Article  Google Scholar 

  • Vuorinen T, Reddy GVP, Nerg AM, Holopainen JK (2004) Monoterpene and herbivore-induced emissions from cabbage plants grown at elevated atmospheric CO2 concentration. Atmos Environ 38:675–682

    Article  CAS  Google Scholar 

  • Wilkinson MJ, Monson RK, Trahan N et al (2009) Leaf isoprene emission rate as a function of atmospheric CO2 concentration. Glob Change Biol 15:1189–1200

    Article  Google Scholar 

  • Yuan JS, Himanen SJ, Holopainen JK, Chen F, Stewart CN (2009) Smelling global climate change: mitigation of function for plant volatile organic compounds. Trends Ecol Evol 24:323–331

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Cornelia Sauer (Agroscope Wädenswil) for providing aphids, Dr. Markus Kalisch (Seminar for Statistics ETH) for statistical advice, Jana Collatz, Heather Kirk (Applied Entomology ETH), Rainer Messmer (Crop Science ETH) and two anonymous reviewers for constructive comments on the manuscript, and Andrea Klaiber for help with plant breeding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana J. Najar-Rodriguez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 148 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klaiber, J., Najar-Rodriguez, A.J., Piskorski, R. et al. Plant acclimation to elevated CO2 affects important plant functional traits, and concomitantly reduces plant colonization rates by an herbivorous insect. Planta 237, 29–42 (2013). https://doi.org/10.1007/s00425-012-1750-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-012-1750-7

Keywords

Navigation