Skip to main content
Log in

A circulatory system useful both for long-term somatic embryogenesis and genetic transformation in Vitis vinifera L. cv. Thompson Seedless

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

To establish an efficient regeneration protocol for functional validation and variety resistance improvement, a long-term system that useful for embryogenic culture maintenance and transformation was developed through recurrent cycles of secondary embryogenesis from Vitis vinifera L. cv. Thompson Seedless. Three media and five types of somatic embryo in secondary embryogenesis were evaluated. Somatic embryos (SE) in the torpedo and mid-cotyledonary stages gave the best embryogenic responses with re-induction rates of about 80 %. Embryogenic callus, proembryonic masses and SE produced in the system, could be propagated for over 3 years and all proved competent for Agrobacterium-mediated transformation. Based on this system, different transgenic selection regimes were compared. Addition of kanamycin at 4 weeks after co-cultivation was optimal for embryo recovery. Plant conversion was improved by alternating culture on two media: one containing 0.2 mg l−1 BA and the other 0.25 mg l−1 kinetin. To further test the efficiency of the system, a ubiquitin ligase gene (VpPUB23) from Chinese wild Vitis pseudoreticulata was transferred into Thompson Seedless for functional evaluation. Of the 351 transgenic plants obtained, those overexpressing VpPUB23 exhibited decreased resistance to powdery mildew compared with non-transgenic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

BA:

6-Benzyladenine

CPPU:

N-(2-Chloro-4-pyridyl)-N′-phenylurea

IAA:

Indole-3-acetic acid

NOA:

2-Naphthoxyacetic acid

KT:

Kinetin

MS:

Murashige and Skoog’s medium

References

  • Bharathy P, Agrawal D (2008) High frequency occurrence of single cotyledonary embryo morphotype and repetitive somatic embryogenesis in ‘Thompson Seedless’ crossed with seven grapevine male parents. Vitis 47:169–174

    Google Scholar 

  • Doyle J, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Dhekney S, Li Z, Dutt M, Gray D (2008) Agrobacterium-mediated transformation of embryogenic cultures and plant regeneration in Vitis rotundifolia Michx. (muscadine grape). Plant Cell Rep 27:865–872

    Article  CAS  PubMed  Google Scholar 

  • Dhekney SA, Li ZT, Compton ME, Gray DJ (2009a) Optimizing initiation and maintenance of Vitis embryogenic cultures. HortScience 44:1400–1406

    Google Scholar 

  • Dhekney SA, Li ZT, Zimmerman TW, Gray DJ (2009b) Factors influencing genetic transformation and plant regeneration of Vitis. Am J Enol Vitic 60:285–292

    CAS  Google Scholar 

  • Fan C, Pu N, Wang X, Wang Y, Fang L, Xu W, Zhang J (2008) Agrobacterium-mediated genetic transformation of grapevine (Vitis vinifera L.) with a novel stilbene synthase gene from Chinese wild Vitis pseudoreticulata. Plant Cell, Tissue Organ Cult 92:197–206

    Article  CAS  Google Scholar 

  • Franks T, He DG, Thomas M (1998) Regeneration of transgenic shape Vitis vinifera L. Sultana plants: genotypic and phenotypic analysis. Mol Breed 4:321–333

    Article  CAS  Google Scholar 

  • Garfinkel DJ, Nester EW (1980) Agrobacterium tumefaciens mutants affected in crown gall tumorigenesis and octopine catabolism. J Bacteriol 144:732–743

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guan X, Zhao H, Xu Y, Wang Y (2011) Transient expression of glyoxal oxidase from the Chinese wild grape Vitis pseudoreticulata can suppress powdery mildew in a susceptible genotype. Protoplasma 248:415–423

    Article  CAS  PubMed  Google Scholar 

  • Harst M, Bornhoff B-A, Zyprian E, Jach G, Töpfer R (2000) Regeneration and transformation of different explants of Vitis vinifera spp. Acta Hortic 528:289–295

    Google Scholar 

  • Hua Y, Huang T, Huang H (2010) Micropropagation of self-rooting juvenile clones by secondary somatic embryogenesis in Hevea brasiliensis. Plant Breed 129:202–207

    Article  CAS  Google Scholar 

  • Iocco P, Franks T, Thomas M (2001) Genetic transformation of major wine grape cultivars of Vitis vinifera L. Transgenic Res 10:105–112

    Article  CAS  PubMed  Google Scholar 

  • Jayasankar S, Bondada BR, Li Z, Gray D (2003) Comparative anatomy and morphology of Vitis vinifera (Vitaceae) somatic embryos from solid-and liquid-culture-derived proembryogenic masses. Am J Bot 90:973–979

    Article  CAS  PubMed  Google Scholar 

  • Kikkert JR, Hébert-Soulé D, Wallace PG, Striem MJ, Reisch BI (1996) Transgenic plantlets of ‘Chancellor’ grapevine (Vitis sp.) from biolistic transformation of embryogenic cell suspensions. Plant Cell Rep 15:311–316

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Jayasankar S, Gray D (2001) Expression of a bifunctional green fluorescent protein (GFP) fusion marker under the control of three constitutive promoters and enhanced derivatives in transgenic grape (Vitis vinifera). Plant Sci 160:877–887

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Dhekney S, Dutt M, Van Aman M, Tattersall J, Kelley K, Gray D (2006) Optimizing Agrobacterium-mediated transformation of grapevine. In Vitro Cell Dev Biol-Plant 42:220–227

    Article  CAS  Google Scholar 

  • Li H, Li F-L, Du J-C, Lu H, He Z-Q (2008a) Somatic embryogenesis and histological analysis from zygotic embryos in Vitis vinifera L. ‘Moldova’. For Stud China 10:253–258

    Article  CAS  Google Scholar 

  • Li ZT, Dhekney S, Dutt M, Gray D (2008b) An improved protocol for Agrobacterium-mediated transformation of grapevine (Vitis vinifera L.). Plant Cell, Tissue Organ Cult 93:311–321

    Article  Google Scholar 

  • Li W, Ahn I-P, Ning Y, Park C-H, Zeng L, Whitehill JG, Lu H, Zhao Q, Ding B, Xie Q (2012) The U-Box/ARM E3 ligase PUB13 regulates cell death, defense, and flowering time in Arabidopsis. Plant Physiol 159:239–250

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • López-Pérez A, Carreño J, Dabauza M (2006) Somatic embryo germination and plant regeneration of three grapevine cvs: effect of IAA, GA. Vitis 45:141–143

    Google Scholar 

  • Martinelli L, Bragagna P, Poletti V, Scienza A (1993) Somatic embryogenesis from leaf-and petiole-derived callus of Vitis rupestris. Plant Cell Rep 12:207–210

    Article  CAS  PubMed  Google Scholar 

  • Martinelli L, Candioli E, Costa D, Poletti V, Rascio N (2001) Morphogenic competence of Vitis rupestris S. secondary somatic embryos with a long culture history. Plant Cell Rep 20:279–284

    Article  CAS  Google Scholar 

  • Morgana C, Di Lorenzo R, Carimi F (2004) Somatic embryogenesis of Vitis vinifera L. (cv. Sugraone) from stigma and style culture. Vitis 43:169–173

    CAS  Google Scholar 

  • Mullins M, Srinivasan C (1976) Somatic embryos and plantlets from an ancient clone of the grapevine (cv. Cabernet-Sauvignon) by apomixis in vitro. J Exp Bot 27:1022–1030

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Oláh R, Zok A, Pedryc A, Howard S, Kovács LG (2009) Somatic embryogenesis in a broad spectrum of grape genotypes. Sci Hortic-Amst 120:134–137

    Article  Google Scholar 

  • Palomo-Ríos E, Barceló-Muñoz A, Mercado JA, Pliego-Alfaro F (2012) Evaluation of key factors influencing Agrobacterium-mediated transformation of somatic embryos of avocado (Persea americana Mill.). Plant Cell, Tissue Organ Cult 109:201–211

    Article  Google Scholar 

  • Perl A, Lotan O, Abu-Abied M, Holland D (1996) Establishment of an Agrobacterium-mediated transformation system for grape (Vitis vinifera L.): the role of antioxidants during grape—Agrobacterium interactions. Nat Biotechnol 14:624–628

    Article  CAS  PubMed  Google Scholar 

  • Pinto-Sintra A (2007) Establishment of embryogenic cultures and plant regeneration in the Portuguese cultivar ‘Touriga Nacional’of Vitis vinifera L. Plant Cell, Tissue Organ Cult 88:253–265

    Article  Google Scholar 

  • Reid KE, Olsson N, Schlosser J, Peng F, Lund ST (2006) An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biol 6:27

    Article  PubMed Central  PubMed  Google Scholar 

  • Reisch B, Kikkert J, Vidal J, Ali G, Gadoury D (2002) Genetic transformation of Vitis vinifera to improve disease resistance. Acta Hort 603:303–308

    Google Scholar 

  • Shirani S, Mahdavi F, Maziah M (2009) Morphological abnormality among regenerated shoots of banana and plantain (Musa spp.) after in vitro multiplication with TDZ and BAP from excised shoot tips. Afr J Biotechnol 8(21):5755–5761

    CAS  Google Scholar 

  • Torregrosa L, Iocco P, Thomas M (2002) Influence of Agrobacterium strain, culture medium, and cultivar on the transformation efficiency of Vitis vinifera L. Am J Enol Vitic 53:183–190

    CAS  Google Scholar 

  • Trujillo M, Ichimura K, Casais C, Shirasu K (2008) Negative regulation of PAMP-triggered immunity by an E3 ubiquitinligase triplet in Arabidopsis. Curr Biol 18:1396–1401

    Article  CAS  PubMed  Google Scholar 

  • Vidal J, Kikkert J, Wallace P, Reisch B (2003) High-efficiency biolistic co-transformation and regeneration of ‘Chardonnay’ (Vitis vinifera L.) containing npt-II and antimicrobial peptide genes. Plant Cell Rep 22:252–260

    Article  CAS  PubMed  Google Scholar 

  • Vidal JR, Kikkert JR, Donzelli BD, Wallace PG, Reisch BI (2006) Biolistic transformation of grapevine using minimal gene cassette technology. Plant Cell Rep 25:807–814

    Article  CAS  PubMed  Google Scholar 

  • Vidal J, Gomez C, Cutanda M, Shrestha B, Bouquet A, Thomas M, Torregrosa L (2010) Use of gene transfer technology for functional studies in grapevine. Aust J Grape Wine R 16:138–151

    Article  CAS  Google Scholar 

  • Von Aderkas P,  Label P, Lelu M-A (2002) Charcoal affects early development and hormonal concentrations of somatic embryos of hybrid larch. Tree Physiol 22:431–434

    Google Scholar 

  • Wang Q, Li P, Hanania U, Sahar N, Mawassi M, Gafny R, Sela I, Tanne E, Perl A (2005) Improvement of Agrobacterium-mediated transformation efficiency and transgenic plant regeneration of Vitis vinifera L. by optimizing selection regimes and utilizing cryopreserved cell suspensions. Plant Sci 168:565–571

    Article  CAS  Google Scholar 

  • Xu X, Lu J, Ren Z, Wang H, Leong S (2005) Callus induction and somatic embryogenesis in muscadine and seedless bunch grapes (Vitis) from immature ovule culture. Proc Fla State Hort Soc 118:260–262

    Google Scholar 

  • You CR, Fan TJ, Gong XQ, Bian FH, Liang LK, Qu FN (2011) A high-frequency cyclic secondary somatic embryogenesis system for Cyclamen persicum Mill. Plant Cell, Tissue Organ Cult 107:233–242

    Article  Google Scholar 

  • Zhang W-J, Dewey RE, Boss W, Phillippy BQ, Qu R (2013) Enhanced Agrobacterium-mediated transformation efficiencies in monocot cells is associated with attenuated defense responses. Plant Mol Biol 81:273–286

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Yazhou Yang of Northwest A&F University for generously providing the construct. We also thank Dr. Weirong Xu of Ningxia University for critical reading and professional advice regarding the manuscript. This work was supported by the National Natural Science Foundation of China (Grant No. 31171924).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuejin Wang.

Additional information

Qi Zhou and Lingmin Dai have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Q., Dai, L., Cheng, S. et al. A circulatory system useful both for long-term somatic embryogenesis and genetic transformation in Vitis vinifera L. cv. Thompson Seedless. Plant Cell Tiss Organ Cult 118, 157–168 (2014). https://doi.org/10.1007/s11240-014-0471-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0471-y

Keywords

Navigation