Skip to main content
Log in

Computational analysis of polyazoles and their N-oxides

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The polyazoles have five-membered heterocyclic rings with N/C ratios of at least 2/3. Their high nitrogen contents result in relatively high crystal densities and large positive heats of formation, features that make them attractive as frameworks for energetic materials. However the presence of linked nitrogens (catenation) is accompanied by reduced stability (reflected in the large heats of formation). Several related factors may be involved in this, including the weakness of N-N bonds, the possibility of decomposing through release of the very stable N2(g) and the repulsion between lone pairs of neighboring nitrogens. We show that in the polyazoles a particularly important source of reduced stability is the presence of adjacent doubly-coordinated nitrogens, especially if connected by a formal double bond. Our computed polyazole electrostatic potentials are consistent with significant repulsion between the lone pairs of these nitrogens. Introducing an N-oxide linkage on one of them leads to some stabilization; the oxygen withdraws electronic charge from the heterocyclic ring, reducing the electronic repulsion within it. However the N-oxide derivatives having more nitrogen catenation are still the less stable ones. Comparing the polyazoles to the polyazines (six-membered N/C heterocyclic rings), the π electrons in the former are less delocalized and the computed bond lengths in the polyazole rings are consistent with the formal single and double bonds in their Lewis structures. An interesting consequence is that if a second N-oxide is introduced next to the original one, the bond between the two nitrogens remains intact in polyazoles if it is formally double but it is considerably weakened or broken in polyazines, and in polyazoles if formally single.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Afeefy HY, Liebman JF, Stein SF (1998) Neutral thermochemical data. In: Linstrom PJ, Mallard WG (eds) NIST Chemistry Webbook, NIST Standard Reference Database No.69, Gaithersburg. http://webbook.nist.gov

  2. Awadallah AM, Zahra JA (2008) Molecules 13:170–176

    Article  CAS  Google Scholar 

  3. Balabin RM (2009) J Chem Phys 131:154307(1–11) and references cited

  4. Mohite PB, Bhaskar VH (2011) Internat J PharmaTech Res 3:1557–1566

    CAS  Google Scholar 

  5. Kumar R, Yar MS, Chaturvedi S, Srivastava A (2013) Internat J PharmaTech Res 5:1844–1869

    CAS  Google Scholar 

  6. Sobol RW (2012) Encyclopedia of cancer. Springer, Berlin, p. 36

    Google Scholar 

  7. Kumar R, Singh AD, Singh J, Singh H, Roy RK, Chandhary A (2014) Mini-Rev Med Chem 14:72–83

    Article  CAS  Google Scholar 

  8. Benson FR (1984) The high nitrogen compounds. Wiley-Interscience, New York

    Google Scholar 

  9. Katritzky AR (ed) (1985) Handbook of heterocyclic chemistry. Pergamon Press, Oxford

    Google Scholar 

  10. Boyer JH (1986) Nitroazoles. The C-nitro derivatives of five-membered N- and N,O- heterocycles, VCH, Deerfield Beach, FL

  11. Klapötke TM (2007) Struct Bond 125:85–121

    Article  Google Scholar 

  12. Gao H, Shreeve JM (2011) Chem Rev 111:7377–7436

    Article  CAS  Google Scholar 

  13. Aroní G, Barrios LA, Roubeau O, Gamez P (2011) Coord Chem Rev 255:485–546

    Article  Google Scholar 

  14. Klapötke TM (2011) Chemistry of high-energy materials. de Gruyter, Berlin

    Book  Google Scholar 

  15. Licht HH, Ritter H (1994) J Energ Mater 12:223–235

    Article  CAS  Google Scholar 

  16. Pagoria PF, Lee GS, Mitchell AR, Schmidt RD (2002) Thermochim Acta 384:187–204

    Article  CAS  Google Scholar 

  17. Yu Z, Bernstein ER (2013) J Phys Chem A 117:10889–10902

    Article  CAS  Google Scholar 

  18. Yin P, Zhang Q, Shreeve JM (2016) Acc Chem Res 49:4–16

    Article  CAS  Google Scholar 

  19. Kamlet MJ, Jacobs SJ (1968) J Chem Phys 48:23–35

    Article  CAS  Google Scholar 

  20. Rice BM, Hare J (2002) Thermochim Acta 384:377–391

    Article  CAS  Google Scholar 

  21. Politzer P, Murray JS (2011) Central Eur J Energ Mater 8:209–220

    CAS  Google Scholar 

  22. Politzer P, Murray JS (2015) J Mol Model 21:262(1–11)

    Article  Google Scholar 

  23. Politzer P, Murray JS (2016) Propell Explos Pyrotech 41:1–13

    Article  Google Scholar 

  24. Stine JR (1990) J Energ Mater 8:41–73

    Article  CAS  Google Scholar 

  25. Gavezzotti A (1989) J Am Chem Soc 111:1835–1843

    Article  CAS  Google Scholar 

  26. Rice BM, Byrd EFC (2013) J Comput Chem 34:2146–2151

    Article  CAS  Google Scholar 

  27. Luo Y-R (2003) Handbook of bond dissociation energies in organic compounds. CRC Press, Boca Raton, FL

    Google Scholar 

  28. Rheingold AL (ed) (1977) Homoatomic rings, chains and macromolecules of main-group elements. Elsevier, Amsterdam

    Google Scholar 

  29. Cotton FA, Wilkinson G, Murillo CA, Bochmann M (1999) Advanced inorganic chemistry, 6th edn. Wiley-Interscience, Chichester

    Google Scholar 

  30. Wright JS (1974) J Am Chem Soc 96:4753–4760

    Article  CAS  Google Scholar 

  31. Fabian J, Lewars E (2004) Can J Chem 82:50–69

    Article  CAS  Google Scholar 

  32. Noyman M, Zilberg S, Haas Y (2009) J Phys Chem A 113:7376–7382

    Article  CAS  Google Scholar 

  33. Politzer P, Lane P, Murray JS (2013) Struct Chem 24:1965–1974

    Article  CAS  Google Scholar 

  34. Zhao X, Qi C, Zhang R, Zhang S, Li S, Pang S (2015) J Mol Model 21(1–6):223

    Article  Google Scholar 

  35. Begtrup M, Nielsen CJ, Nygaard L, Samdal CE, Sjøgren CE, Sørensen GO (1988) Acta Chem Scand 42A:500–514

    Article  Google Scholar 

  36. Novak L, Kovač B, Klasinc L, Ostrovskii VA (2003) Spectrochim Acta, Part A 59:1725–1731

    Article  Google Scholar 

  37. Wang Y, Wu JI-C, Li Q, Schleyer PR (2010) Org Lett 12:4824–4827

    Article  CAS  Google Scholar 

  38. March J (1985) Advanced organic chemistry, 3rd edn. Wiley-Interscience, New York

    Google Scholar 

  39. Taft RW, Anvia F, Taagepera M, Catalán J, Elguero J (1986) J Am Chem Soc 108:3237–3239

    Article  CAS  Google Scholar 

  40. Tomas F, Abboud J-LM, Laynez J, Notario R, Santos L, Nilsson SO, Catalán J, Claramunt RM, Elguero J (1989) J Am Chem Soc 111:7348–7353

    Article  CAS  Google Scholar 

  41. Wilson KJ, Perera SA, Bartlett RJ, Watts JD (2001) J Phys Chem A 105:7693–7699

    Article  CAS  Google Scholar 

  42. Cremer D, Wu A, Larsson A, Kraka E (2000) J Mol Model 6:396–412

    Article  CAS  Google Scholar 

  43. Cremer D, Kraka E (2010) Curr Org Chem 14:1524–1560

    Article  CAS  Google Scholar 

  44. Macaveiu L, Göbel M, Klapötke TM, Murray JS, Politzer P (2010) Struct Chem 21:139–146

    Article  CAS  Google Scholar 

  45. Storm CB, Ryan RR, Ritchie JP, Hall JH, Bachrach SM (1989) J Phys Chem 93:1000–1007

    Article  CAS  Google Scholar 

  46. Politzer P, Grice ME, Seminario JM (1997) Internat J Quantum Chem 61:389–392

    Article  CAS  Google Scholar 

  47. Murray JS, Politzer P (1988) Chem Phys Lett 152:364–370

    Article  CAS  Google Scholar 

  48. Murray JS, Politzer P (1987) Chem Phys Lett 136:283–288

    Article  CAS  Google Scholar 

  49. Ramsden CA (2010) Tetrahedron 66:2695–2699

    Article  CAS  Google Scholar 

  50. Churakov AM, Tartakovsky VA (2004) Chem Rev 104:2601–2616

    Article  CAS  Google Scholar 

  51. Huynh M-HV, Hiskey MA, Hartline EL, Montoya DP, Gilardi R (2004) Angew Chem Int Ed 43:4924–4928

    Article  CAS  Google Scholar 

  52. Chavez DE, Hiskey MA, Huynh MH, Naud DL, Son SF, Tappan BC (2006) J Pyrotech 23:70–80

    CAS  Google Scholar 

  53. Lai W, Lian P, Ge Z, Liu Y, Yu T, Lv J (2016) J Mol Model 22:83(1–11)

  54. Ali AN, Son SF, Hiskey MA, Naud DL (2004) J Propuls Power 20:120–126

    Article  CAS  Google Scholar 

  55. Huynh MHV, Hiskey MA, Chavez DE, Gilardi RD (2005) J Energ Mater 23:99–106

    Article  CAS  Google Scholar 

  56. Fischer D, Klapötke TM, Piercey DG, Stierstorfer J (2013) Chem Eur J 19:4602–4613

    Article  CAS  Google Scholar 

  57. Politzer P, Lane P, Murray JS (2014) Mol Phys 112:719–725

    Article  CAS  Google Scholar 

  58. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, et al. (2009) Gaussian 09, Revision A.1. Gaussian, Inc., Wallingford, CT

    Google Scholar 

  59. Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) J Am Chem Soc 109:7968–7979

    Article  CAS  Google Scholar 

  60. Stewart RF (1979) Chem Phys Lett 65:335–342

    Article  CAS  Google Scholar 

  61. Politzer P, Truhlar DG (eds) (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum Press, New York

    Google Scholar 

  62. Klein CL, Stevens ED (1988) In: Liebman JF, Greenberg A (eds) Structure and reactivity, vol ch 2. VCH Publishers, New York, pp. 25–64

    Google Scholar 

  63. Murray JS, Politzer P (2011) WIREs Comput Mol Sci 1:153–163

    Article  CAS  Google Scholar 

  64. Bulat FA, Toro-Labbé A, Brinck T, Murray JS, Politzer P (2010) J Mol Model 16:1679–1693

    Article  CAS  Google Scholar 

  65. Allen FH, Kennard O, Watson DG, Brammer L, Orpen AG, Taylor R (1987) J Chem Soc Perkin Trans II:S1–S19

    Article  Google Scholar 

  66. Cyranski MK, Krygowski TM, Katritzky AR, Schleyer PR (2002) J Org Chem 67:1333–1338

    Article  CAS  Google Scholar 

  67. Krygowski TM, Oziminski WP, Ramsden CA (2011) J Mol Model 17:1427–1433

    Article  CAS  Google Scholar 

  68. Dabbagh HA, Rasti E, Chermahini AN (2010) J Mol Struct (THEOCHEM) 947:92–100

    Article  CAS  Google Scholar 

  69. Katritzky AR, Taylor R (1990) Adv Heterocyclic Chem 47:277–323

    Article  Google Scholar 

  70. Lane P, Murray JS, Politzer P (1991) J Mol Struct (THEOCHEM) 236:283–296

    Article  Google Scholar 

  71. Poole JS (2009) J Mol Struct (THEOCHEM) 894:93–102

    Article  CAS  Google Scholar 

  72. Tang Z-X, Li X-H, Zhang X-Z (2009) J Mol Struct (THEOCHEM) 907:126–130

    Article  CAS  Google Scholar 

  73. Rowland FS, Taylor R (1996) J Phys Chem 100:7384–7391

    Article  CAS  Google Scholar 

  74. Alvarez S (2013) Dalton Trans 42:8617–8636

    Article  CAS  Google Scholar 

  75. Murray JS, Seminario JM, Politzer P (1989) J Mol Struct (THEOCHEM) 187:95–108

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Politzer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Politzer, P., Murray, J.S. Computational analysis of polyazoles and their N-oxides. Struct Chem 28, 1045–1063 (2017). https://doi.org/10.1007/s11224-016-0909-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-016-0909-4

Keywords

Navigation