Skip to main content
Log in

Structures and stabilities of asymmetrical dimer radical cation systems (AH3–H2O)+ (A=N, P, As)

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Structures, stabilities, binding energies, and bonding nature of the dimer radical cation systems (AH3–H2O)+ (A=N, P, As) have been studied using B3LYP, MP2, and CCSD methods. The local minima of (NH3–H2O)+ include a hemi-bonded structure (H3N+···OH2), a proton-transferred hydrogen-bonded structure (H3NH+···OH), and a non-proton-transferred hydrogen-bonded structure (H2N–H+···OH2) which is the most stable conformer. Both the P and As complexes have four local minima. In addition to the three structures found for the nitrogen analog, a second proton-transferred hydrogen-bonded structure (H2A···H–OH2 +) was found. For the P complexes, the hemi-bonded structure (H3P+···OH2) is the most stable complex, while for the As compounds the hemi-bonded structure (H3As+···OH2) and hydrogen-bonded structure (H2As···H–OH2 +) are the most stable ones. The atomic spin density and charge population and properties at the bond critical points have been calculated to study the structures and bonding characters of these dimer radical cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jeffrey GA, Saenger W (1991) Hydrogen bonding in biological structures. Springer, Berlin

    Book  Google Scholar 

  2. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, New York

    Google Scholar 

  3. Bernstein ER (1992) J Phys Chem 96:10105–10115

    Article  CAS  Google Scholar 

  4. Brutschy B (1992) Chem Rev 92:1567–1587

    Article  CAS  Google Scholar 

  5. Zahradnı´k R (1995) Acc Chem Res 28:306–312

    Article  Google Scholar 

  6. Clark T (1988) J Am Chem Soc 110:1672–1678

    Article  CAS  Google Scholar 

  7. Hiberty PC, Humbel S, Danovich D, Shaik S (1995) J Am Chem Soc 117:9003–9011

    Article  CAS  Google Scholar 

  8. Hahn K, Han ML (2009) J Phys Chem A 113:6859–6864

    Article  Google Scholar 

  9. Gill PMW, Radom L (1988) J Am Chem Soc 110:4931–4941

    Article  CAS  Google Scholar 

  10. Bickelhaupt FM, Diefenbach A, de Visser SP, de Koning LJ, Nibbering NMM (1998) J Phys Chem A 102:9549–9553

    Article  CAS  Google Scholar 

  11. Sodupe M, Bertran J, Rodríguez-Santiago L, Baerends EJ (1999) J Phys Chem A 103:166–170

    Article  CAS  Google Scholar 

  12. Maity DK (2002) J Phys Chem A 106:5716–5721 and references therein

    Article  CAS  Google Scholar 

  13. Ghanty TK, Ghosh SK (2002) J Phys Chem A 106:11815–11821

    Article  CAS  Google Scholar 

  14. Ghanty TK, Ghosh SK (2002) J Phys Chem A 106:4200–4204

    Article  CAS  Google Scholar 

  15. Sodupe M, Oliva A, Bertran J (1994) J Am Chem Soc 116:8249–8258

    Article  CAS  Google Scholar 

  16. De Visser SP, De Koning LJ, Nibbering NMM (1998) J Am Chem Soc 120:1517–1522

    Article  Google Scholar 

  17. Gurtubay IG, Drummond ND, Towler MD, Needs RJ (2006) J Chem Phys 124:24318–24323

    Article  CAS  Google Scholar 

  18. Joshi R, Ghanty TK, Naumov S, Mukherjee T (2007) J Phys Chem A 111:2362–2367

    Article  CAS  Google Scholar 

  19. Pieniazek PA, VandeVondele J, Jungwirth P, Krylov AI, Bradforth AE (2008) J Phys Chem A 112:6159–6170

    Article  CAS  Google Scholar 

  20. Cheng Q, Evangelista FA, Simmonett AC, Yamaguchi Y, Schaefer HF III (2009) J Phys Chem A 113:13779–13789

    Article  CAS  Google Scholar 

  21. Lee HM, Kim HJ (2009) Chem Theory Comput 5:976–981

    Article  CAS  Google Scholar 

  22. Gardenier G, Johnson MA, McCoy AB (2009) J Phys Chem A 113:4772–4779

    Article  CAS  Google Scholar 

  23. Kamarchik E, Kostko O, Bowman JM, Ahmed M, Krylov AI (2010) J Chem Phys 132:194311/1–194311/11

    CAS  Google Scholar 

  24. Chipman DM (2011) J Phys Chem A 115:1161–1171

    Article  CAS  Google Scholar 

  25. Tsai MK, Kuo JL, Lu JM (2012) Phys Chem Chem Phys 14:13402–13408

    Article  CAS  Google Scholar 

  26. Pan PR, Lin YS, Tsai MK, Kuo JL, Chai JD (2012) Phys Chem Chem Phys 14:10705–10712

    Article  CAS  Google Scholar 

  27. Joshi R, Ghanty TK, Mukherjee T, Naumov S (2012) J Phys Chem A 116:11965–11972

    Article  CAS  Google Scholar 

  28. Do H, Besley NA (2013) Phys Chem Chem Phys 15:16214–16219

    Article  CAS  Google Scholar 

  29. Wang YB, Tao FM, Pan YK (1994) Chem Phys Lett 230:480–484

    Article  CAS  Google Scholar 

  30. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  31. Baboul AG, Curtiss LA, Redfern PC (1999) J Chem Phys 110:7650–7657

    Article  CAS  Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JAJ, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.02, Gaussian: Wallingford, CT, USA

  33. Reed AE, Weinhold F, Curtiss LA, Pochatko DJ (1986) J Chem Phys 84:5687–5705

    Article  CAS  Google Scholar 

  34. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  35. Bader RFW (1990) Atoms in molecules-a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  36. Bader RFW, MacDougall PJ, Lau CDH (1984) J Am Chem Soc 106:1594–1605

    Article  CAS  Google Scholar 

  37. Popelier PLA (2000) Atoms in molecules. An introduction. Pearson Education Limited, London

    Google Scholar 

  38. Koch U, Popelier PLA (1995) J Phys Chem A 99:9747

    Article  CAS  Google Scholar 

  39. Keith TA (2013) AIMAll (Version 13.10.19). TK Gristmill Software, Overland Park KS, USA (aim.tkgristmill.com)

  40. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  41. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Weinhold F (1990) Gaussian NBO V3.1. Theoretical Chemistry Institute, University of Wisconsin, Madison, WI

  42. łkowski MZ, Grabowski SJ, Leszczynski J (2006) J Phys Chem A 110:6514–6521

    Article  Google Scholar 

  43. Cremer D, Kraka E (1984) Angew Chem Int Ed Engl 23:627–628

    Article  Google Scholar 

  44. Jenkins S, Morrison I (2000) Chem Phys Lett 317:97–102

    Article  CAS  Google Scholar 

  45. Scheiner S (2011) J Chem Phys 134:094315/1–094315/9

    CAS  Google Scholar 

  46. Solimannejad M, Gharabaghi M, Scheiner S (2011) J Chem Phys 134:024312

    Article  Google Scholar 

  47. Scheiner S (2011) J Phys Chem A 115:11202–11209

    Article  CAS  Google Scholar 

  48. Adhikari U, Scheiner S (2012) J Phys Chem A 116:3487–3497

    Article  CAS  Google Scholar 

  49. Murray JS, Lane P, Clark T, Riley KE, Politzer P (2012) J Mol Model 18:541–548

    Article  CAS  Google Scholar 

  50. Del Bene JE, Alkorta I, Elguero J (2013) J Phys Chem A 117(45):11592–11604

    Article  Google Scholar 

  51. Alkorta I, Elguero J (2013) J Phys Chem A 117(40):10497–10503

    Article  CAS  Google Scholar 

  52. Alkorta I, Sánchez-Sanz G, Elguero J, Del Bene JE (2014) J Phys Chem A 118(8):1527–1537

    Article  CAS  Google Scholar 

  53. Alkorta I, Elguero J, Solimannejad M (2014) J Phys Chem A 118(5):947–953

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An Yong Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 401 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, L.F., Li, A.Y. & Li, Z.Z. Structures and stabilities of asymmetrical dimer radical cation systems (AH3–H2O)+ (A=N, P, As). Struct Chem 26, 109–119 (2015). https://doi.org/10.1007/s11224-014-0472-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0472-9

Keywords

Navigation