Skip to main content
Log in

A computational study on [(PH2X)2]·+ homodimers involving intermolecular two-center three-electron bonds

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

A computational study at CCSD(T) theoretical level has been carried out on radical cation [(PH2X)2]·+ homodimers. Four stable minima configurations have been found for seven substituted phosphine derivatives, X = H, CH3, CCH, NC, OH, F and Cl. The most stable minimum presents an intermolecular two-center three-electron P···P bond except for X = CCH. The other three minima correspond to an alternative P···P pnicogen bonded complex, to a P···X contact and the last one to the complex resulting from a proton transfer, PH3X+:PHX·. The complexes obtained have been compared with those of the corresponding neutral ones, (PH2X)2, and the analogous protonated ones, PH3X+:PH2X, recently described in the literature. The spin and charge densities of the complexes have been examined. The electronic characteristics of the complexes have been analyzed with the NBO and AIM methods. The results obtained for the spin density, charge and NBO are coherent for all the complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pauling L (1931) The nature of the chemical bond. II. The one-electron bond and the three-electron bond. J Am Chem Soc 53:3225–3237

    Article  CAS  Google Scholar 

  2. Fourré I, Silvi B (2007) What can we learn from two-center three-electron bonding with the topological analysis of ELF? Heteroat Chem 18:135–160

    Article  Google Scholar 

  3. Sodupe M, Oliva A, Bertrán J (1995) Theoretical study of the ionization of the H2S–H2S, PH3–H2S, and ClH–H2S hydrogen bonded molecules. J Am Chem Soc 117:8416–8421

    Article  CAS  Google Scholar 

  4. Wadey JD, Besley NA (2014) The structure and bonding of mixed component radical cation clusters. Chem Phys Lett 601:110–115

    Article  CAS  Google Scholar 

  5. Zhang S, Wang X, Sui Y, Wang X (2014) Odd-electron-bonded sulfur radical cations: X-ray structural evidence of a sulfur–sulfur three-electron sigma-bond. J Am Chem Soc 136:14666–14669

    Article  CAS  Google Scholar 

  6. Ji LF, Li AY, Li ZZ (2014) Structures and stabilities of asymmetrical dimer radical cation systems (AH3–H2O)+ (A = N, P, As). Struct Chem 26:109–119

    Article  Google Scholar 

  7. Do H, Besley N (2013) Proton transfer or hemibonding? The structure and stability of radical cation clusters. Phys Chem Chem Phys 15:16214–16219

    Article  CAS  Google Scholar 

  8. Stein T, Jiménez-Hoyos CA, Scuseria GE (2014) Stability of hemi-bonded vs proton-transferred structures of (H2O)2+, (H2S)2+, and (H2Se)2+ studied with projected Hartree–Fock methods. J Phys Chem A 118:7261–7266

    Article  CAS  Google Scholar 

  9. Joshi R, Ghanty TK, Naumov S, Mukherjee T (2007) Structural investigation of asymmetrical dimer radical cation system (H2O–H2S)+: proton-transferred or hemi-bonded? J Phys Chem A 111:2362–2367

    Article  CAS  Google Scholar 

  10. Bil A, Berski S, Latajka Z (2007) On three-electron bonds and hydrogen bonds in the open-shell complexes [H2X2]+ for X = F, Cl, and Br. J Chem Inf Model 47:1021–1030

    Article  CAS  Google Scholar 

  11. Gill PMW, Radom L (1988) Structures and stabilities of singly charged three-electron hemibonded systems and their hydrogen-bonded isomers. J Am Chem Soc 110:4931–4941

    Article  CAS  Google Scholar 

  12. Maity DK (2002) Sigma bonded radical cation complexes: a theoretical study. J Phys Chem A 106:5716–5721

    Article  CAS  Google Scholar 

  13. Ji LF, Li AY, Li ZZ (2015) Structures and stabilities of hemi-bonded vs proton-transferred isomers of dimer radical cation systems (XH3_YH3)+ (X, Y = N, P, As). Chem Phys Lett 619:115–121

    Article  CAS  Google Scholar 

  14. Alkorta I, Elguero J, Solimannejad M (2014) Single electron pnicogen bonded complexes. J Phys Chem A 118:947–953

    Article  CAS  Google Scholar 

  15. Alkorta I, Sánchez-Sanz G, Elguero J, Del Bene JE (2012) Influence of hydrogen bonds on the P···P pnicogen bond. J Chem Theory Comput 8:2320–2327

    Article  CAS  Google Scholar 

  16. Alkorta I, Sánchez-Sanz G, Elguero J, Del Bene JE (2014) Pnicogen bonds between X = PH3 (X = O, S, NH, CH2) and phosphorus and nitrogen bases. J Phys Chem A 118:1527–1537

    Article  CAS  Google Scholar 

  17. Del Bene JE, Alkorta I, Elguero J (2014) σ–σ and σ–π pnicogen bonds in complexes H2XP:PCX, for X = F, Cl, OH, NC, CN, CCH, CH3 and H. Theor Chem Acc 133:1–9

    Google Scholar 

  18. Del Bene JE, Alkorta I, Elguero J (2015) Substituent effects on the properties of pnicogen-bonded complexes H2XP:PYH2, for X, Y = F, Cl, OH, NC, CCH, CH3, CN, and H. J Phys Chem A 119:224–233

    Article  Google Scholar 

  19. Eskandari K, Mahmoodabadi N (2013) Pnicogen bonds: a theoretical study based on the Laplacian of electron density. J Phys Chem A 117:13018–13024

    Article  CAS  Google Scholar 

  20. Sánchez-Sanz G, Alkorta I, Trujillo C, Elguero J (2013) Intramolecular pnicogen interactions in PHF–(CH2)n–PHF (n = 2–6) systems. ChemPhysChem 14:1656–1665

    Article  Google Scholar 

  21. Scheiner S (2013) The pnicogen bond: its relation to hydrogen, halogen, and other noncovalent bonds. Acc Chem Res 46:280–288

    Article  CAS  Google Scholar 

  22. Zahn S, Frank R, Hey-Hawkins E, Kirchner B (2011) Pnicogen bonds: a new molecular linker? Chem Eur J 17:6034–6038

    Article  CAS  Google Scholar 

  23. Setiawan D, Kraka E, Cremer D (2014) Description of pnicogen bonding with the help of vibrational spectroscopy—the missing link between theory and experiment. Chem Phys Lett 614:136–142

    Article  CAS  Google Scholar 

  24. Setiawan D, Kraka E, Cremer D (2015) Strength of the pnicogen bond in complexes involving group V elements N, P, and As. J Phys Chem A 119:1642–1656

    Article  CAS  Google Scholar 

  25. Del Bene JE, Alkorta I, Elguero J (2015) Substituent effects on the properties of pnicogen-bonded complexes H2XP:PYH2, for X, Y = F, Cl, OH, NC, CCH, CH3, CN, and H. J Phys Chem A 119:224–233

    Article  Google Scholar 

  26. Del Bene JE, Alkorta I, Elguero J (2014) Pnicogen-bonded anionic complexes. J Phys Chem A 118:3386–3392

    Article  Google Scholar 

  27. Del Bene JE, Alkorta I, Elguero J (2014) Influence of substituent effects on the formation of P···Cl pnicogen bonds or halogen bonds. J Phys Chem A 118:2360–2366

    Article  Google Scholar 

  28. Azofra LM, Alkorta I, Elguero J (2014) Chiral discrimination in dimers of diphosphines PH2–PH2 and PH2–PHF. ChemPhysChem 15:3663–3670

    Article  CAS  Google Scholar 

  29. Alkorta I, Elguero J, Solimannejad M (2014) Single electron pnicogen bonded complexes. J Phys Chem A 118:947–953

    Article  CAS  Google Scholar 

  30. Scheiner S (2013) Detailed comparison of the pnicogen bond with chalcogen, halogen, and hydrogen bonds. Int J Quantum Chem 113:1609–1620

    Article  CAS  Google Scholar 

  31. Scheiner S (2013) Sensitivity of noncovalent bonds to intermolecular separation: hydrogen, halogen, chalcogen, and pnicogen bonds. CrystEngComm 15:3119–3124

    Article  CAS  Google Scholar 

  32. Del Bene JE, Alkorta I, Sánchez-Sanz G, Elguero J (2013) Phosphorus as a simultaneous electron-pair acceptor in intermolecular P···N pnicogen bonds and electron-pair donor to Lewis acids. J Phys Chem A 117:3133–3141

    Article  Google Scholar 

  33. Del Bene JE, Alkorta I, Elguero J (2013) Characterizing complexes with pnicogen bonds involving sp2 hybridized phosphorus atoms: (H2C:PX)2 with X = F, Cl, OH, CN, NC, CCH, H, CH3, and BH2. J Phys Chem A 117:6893–6903

    Article  Google Scholar 

  34. Del Bene JE, Alkorta I, Elguero J (2013) Properties of complexes H2C = (X)P:PXH2, for X = F, Cl, OH, CN, NC, CCH, H, CH3, and BH2:P···P pnicogen bonding at σ-holes and π-holes. J Phys Chem A 117:11592–11604

    Article  Google Scholar 

  35. Bauer S, Tschirschwitz S, Loennecke P, Frank R, Kirchner B, Clarke ML, Hey-Hawkins E (2009) Enantiomerically pure bis(phosphanyl)carbaborane(12) compounds. Eur J Inorg Chem 2009:2776–2788

    Article  Google Scholar 

  36. Politzer P, Murray JS, Janjic GV, Zaric SD (2014) σ-Hole interactions of covalently-bonded nitrogen, phosphorus and arsenic: a survey of crystal structures. Crystals 4:12–31

    Article  Google Scholar 

  37. LaBarge MS, Andrews AM, Taleb-Bendiab A, Hillig KW II, Kuczkowski RL, Bohn RK (1991) Microwave spectrum, structure, and dipole moment of the phosphorus trifluoride–water complex. J Phys Chem 95:3523–3527

    Article  CAS  Google Scholar 

  38. Sundberg MR, Uggla R, Vinas C, Teixidor F, Paavola S, Kivekaes R (2007) Nature of intramolecular interactions in hypercoordinate C-substituted 1,2-dicarba-closo-dodecaboranes with short P···P distances. Inorg Chem Commun 10:713–716

    Article  CAS  Google Scholar 

  39. Tschirschwitz S, Loennecke P, Hey-Hawkins E (2007) Aminoalkylferrocenyldichlorophosphanes: facile synthesis of versatile chiral starting materials. Dalton Trans 2007:1377–1382

    Article  Google Scholar 

  40. Jurecka P, Sponer J, Cerny J, Hobza P (2006) Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. Phys Chem Chem Phys 8:1985–1993

    Article  CAS  Google Scholar 

  41. Del Bene JE, Alkorta I, Sánchez-Sanz G, Elguero J (2011) 31P–31P spin–spin coupling constants for pnicogen homodimers. Chem Phys Lett 512:184–187

    Article  Google Scholar 

  42. Alkorta I, Elguero J, Grabowski SJ (2015) Pnicogen and hydrogen bonds: complexes between PH3X+ and PH2X systems. Phys Chem Chem Phys 17:3261–3272

    Article  CAS  Google Scholar 

  43. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision D.01. Gaussian, Wallingford

    Google Scholar 

  44. Møller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46:618–622

    Article  Google Scholar 

  45. Del Bene JE (1993) Proton affinities of ammonia, water, and hydrogen fluoride and their anions: a quest for the basis-set limit using the Dunning augmented correlation-consistent basis sets. J Phys Chem 97:107–110

    Article  Google Scholar 

  46. Dunning TH Jr (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  47. Woon DE, Dunning TH (1995) Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon. J Chem Phys 103:4572–4585

    Article  CAS  Google Scholar 

  48. Halkier A, Klopper W, Helgaker T, Jørgensen P, Taylor PR (1999) Basis set convergence of the interaction energy of hydrogen-bonded complexes. J Chem Phys 111:9157–9167

    Article  CAS  Google Scholar 

  49. Halkier A, Helgaker T, Jørgensen P, Klopper W, Olsen J (1999) Basis-set convergence of the energy in molecular Hartree–Fock calculations. Chem Phys Lett 302:437–446

    Article  CAS  Google Scholar 

  50. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  51. Popelier PL (2000) Atoms in molecules: an introduction. Prentice Hall, London

    Book  Google Scholar 

  52. Matta CF, Boyd RJ (2007) The quantum theory of atoms in molecules: from solid state to DNA and drug design. Wiley-VCH, Weinham

  53. AIMAll (Version 14.11.23), Keith TA (2014) TK Gristmill Software, Overland Park KS, USA (aim.tkgristmill.com)

  54. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  Google Scholar 

  55. Jmol: an open-source Java viewer for chemical structures in 3D, version 13.10. http://www.jmol.org/. Accessed 26 Sept 2013

  56. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor–acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  57. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Landis CR, Weinhold F (2013) NBO-6. Theoretical Chemistry Institute, University of Wisconsin, Madisn

    Google Scholar 

  58. Linstrom PJ, Mallard WG (eds) NIST Chemistry webbook, NIST standard reference database number 69, National Institute of Standards and Technology. Gaithersburg 20899. http://webbook.nist.gov. Accessed Mar 2015

  59. Knop O, Boyd RJ, Choi SC (1988) Sulfur–sulfur bond lengths, or can a bond length be estimated from a single parameter? J Am Chem Soc 110:7299–7301

    Article  CAS  Google Scholar 

  60. Alkorta I, Rozas I, Elguero J (1998) Bond length-electron density relationships: from covalent bonds to hydrogen bond interactions. Struct Chem 9:243–247

    Article  CAS  Google Scholar 

  61. Gibbs GV, Hill FC, Boisen MB, Downs RT (1998) Power law relationships between bond length, bond strength and electron density distributions. Phys Chem Miner 25:585–590

    Article  CAS  Google Scholar 

  62. Alkorta I, Barrios L, Rozas I, Elguero J (2000) Comparison of models to correlate electron density at the bond critical point and bond distance. J Mol Struct Theochem 496:131–137

    Article  CAS  Google Scholar 

  63. Knop O, Rankin KN, Boyd RJ (2001) Coming to grips with N–H···N bonds. 1. Distance relationships and electron density at the bond critical point. J Phys Chem A 105:6552–6566

    Article  CAS  Google Scholar 

  64. Knop O, Rankin KN, Boyd RJ (2003) Coming to grips with N–H···N bonds. 2. Homocorrelations between parameters deriving from the electron density at the bond critical point. J Phys Chem A 107:272–284

    Article  CAS  Google Scholar 

  65. Mata I, Alkorta I, Molins E, Espinosa E (2010) Universal features of the electron density distribution in hydrogen-bonding regions: a comprehensive study involving H···X (X = H, C, N, O, F, S, Cl, pi) interactions. Chem Eur J 16:2442–2452

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Spanish Ministerio de Economía y Competitividad (CTQ2012-35513-C02-02) and Comunidad Autónoma de Madrid (S2013/MIT-2841, Fotocarbon). Computer, storage and other resources from the CTI (CSIC) are gratefully acknowledged. One of us (M.M.-L.) thanks the Ministerio de Economía y Competitividad for her contract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Marín-Luna.

Additional information

Marta Marín-Luna is on leave from Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11224_2015_617_MOESM1_ESM.doc

Molecular graphs, CCSD(T)/CBS energy and geometry of the minima of the system calculated. Bond lengths and angles values of both monomers, A and B, in the complexes. Net charge values of monomers A in the complexes.(DOC 2130 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marín-Luna, M., Alkorta, I. & Elguero, J. A computational study on [(PH2X)2]·+ homodimers involving intermolecular two-center three-electron bonds. Struct Chem 27, 753–762 (2016). https://doi.org/10.1007/s11224-015-0617-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-015-0617-5

Keywords

Navigation