Skip to main content

Advertisement

Log in

How Do Density Ceiling Controls Affect Housing Prices and Urban Boundaries?

  • Published:
The Journal of Real Estate Finance and Economics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This article investigates how density ceiling controls in a monocentric city with a stochastic population affect housing prices and the location of the city boundary. We employ a real options model in which each landowner owns one unit parcel of land and chooses the timing and the level of capital intensity for development of the parcel. The landowner incurs up-front development costs that are irreversible and thereafter receives stochastic urban rents. A tighter density ceiling control will extend the urban boundary and decrease housing prices. The urban spatial expansion problem will be intact, but the landowner will delay development when city population is expected to grow less rapidly over time or becomes more volatile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Brueckner and Sridhar (2012) confirm the spatial expansion effect by using the data on India’s cities.

  2. Our focus significantly differs from previous research that employs the real options approach such as Jou and Lee (2007), Lee and Jou (2007), and Williams (1991), which focus less on boundary control and more on how the regulation of density affects the timing of development.

  3. See empirical studies such as Hamilton (1978), Mills and Oats (1975), Thorsnes (2000), Fu and Somerville (2001), Glaser, Gyourko and Saks (2005), Cunningham (2007), and Ihlanfeldt (2007). These studies use proxies to measure the level of density ceiling controls because various forms of land use controls are usually imposed at the same time (Mills 2005).

  4. See also the study by Pines and Kono (2012), which shows that in a fully closed monocentric city, with a homogeneous population, floor area ratio regulation cannot replace the fiscal instruments for achieving the second-best allocation if land prices are negative.

  5. It is possible to consider a circular city, which, however, would complicate the analysis substantially.

  6. One can generalize our model so that it can be applied to a risk aversion environment in the manner of Cox and Ross (1976).

  7. As shown in Capozza and Li (1994), we must assume that the undeveloped land yielding no return so as to derive a closed-form solution for a landowner’s choice of capital intensity.

  8. Our specification is in line with that assumed in Capozza and Helsley (1990), Capozza and Li (1994), and Capozza and Sick (1994). The arithmetic Brownian motion of urban rents is supported by the empirical data but suffers the shortcoming that urban rents may be negative. See a thorough discussion in Capozza and Li (1994).

  9. This functional form is supported by the empirical study of Thorsnes (1997).

  10. The analysis of a certainty case appears in several studies in the real options literature. See, for example, Capozza and Li (2002) and Dixit and Pindyck (1994, pp. 138–139).

  11. If we assume that the development cost in Eq. (6) is equal to εkD λ, where λ > 0, then we will reach the same conclusion as those of Bertaud and Brueckner (2005) and Mills (2005). That is, the development density will decline with the distance from the CBD. However, the evolution of x(t) will then not follow an arithmetic Brownian as conjectured in Eq. (4). Consequently, we do not make this assumption.

  12. However, we make assumptions about landowners and renters that are different from that of Bertaud and Brueckner (2005). They employ a static model in which landowners make no profits in competitive equilibrium, while renters can choose the sizes of their dwellings as they wish. In contrast, we employ a dynamic model in which a landowner has some leeway in developing his/her vacant parcel of land and in which each resident occupies one unit of floor area.

  13. Mills (2005, p.579) provides an example of the reaction of a developer in the north shore community areas in Chicago: “A common scenario is that a developer proposes to build a condo building on or near the lakefront that current controls may allow to be 40 stories. The local homeowners’ association lobbies its city council representative who gets the council to restrict the proposed building to 15–25 stories. The developer then abandons the proposal.”

References

  • Arnott, R., & Lewis, F. D. (1979). The transition of land to urban use. Journal of Political Economy, 87(1), 161–169.

    Article  Google Scholar 

  • Bertaud, A., & Brueckner, J. K. (2005). Analyzing building-height restrictions: predicted impacts and welfare costs. Regional Science and Urban Economics, 35, 109–125.

    Article  Google Scholar 

  • Brueckner, J. K., & Sridhar, K. S. (2012). Measuring welfare gains from relaxation of land-use restrictions: The case of India’s building-height limits. Regional Science and Urban Economics, 42, 1061–1067.

    Article  Google Scholar 

  • Capozza, D., & Helsley, R. (1990). The stochastic city. Journal of Urban Economics, 28, 187–203.

    Article  Google Scholar 

  • Capozza, D., & Li, Y. (1994). The intensity and timing of investment: The case of land. The American Economic Review, 84(4), 889–904.

    Google Scholar 

  • Capozza, D., & Li, Y. (2002). Optimal land development decisions. Journal of Urban Economics, 51, 123–142.

    Article  Google Scholar 

  • Capozza, D., & Sick, G. (1994). The risk structure of land markets. Journal of Urban Economics, 35, 297–319.

    Article  Google Scholar 

  • Cox, J. C., & Ross, S. A. (1976). The valuation of options for alternative stochastic process. Journal of Financial Economics, 3(1), 145–166.

    Article  Google Scholar 

  • Cunningham, C. R. (2007). Growth controls, real options, and land development. Review of Economics and Statistics, 89(2), 343–358.

    Article  Google Scholar 

  • Dixit, A. K., & Pindyck, R. S. (1994). Investment under uncertainty. Princeton: Princeton University Press.

    Google Scholar 

  • Fu, Y., & Somerville, T. (2001). Site density restrictions: measurement and empirical analysis. Journal of Urban Economics, 49(2), 404–423.

    Article  Google Scholar 

  • Fujita, M. (1982). Spatial patterns of residential development. Journal of Urban Economics, 12(1), 22–52.

    Article  Google Scholar 

  • Glaeser, E., Gyourko, J., & Saks, R. (2005). Why is Manhattan so expensive? Regulation and the rise in housing prices. Journal of Law and Economics, 48(2), 331–369.

    Article  Google Scholar 

  • Hamilton, B. (1978). Zoning and the exercise of monopoly power. Journal of Urban Economics, 5(1), 116–130.

    Article  Google Scholar 

  • Helsley, R. W., & Strange, W. C. (1995). Strategic growth controls. Regional Science and Urban Economics, 25, 435–460.

    Article  Google Scholar 

  • Ihlanfeldt, K. R. (2007). The effect of land use regulation on housing and land prices. Journal of Urban Economics, 61, 420–435.

    Article  Google Scholar 

  • Jou, J.-B. (2012). Efficient boundary controls in the presence of population externalities, and stochastic rents. Quarterly Review of Economics and Finance, 52, 349–357.

    Article  Google Scholar 

  • Jou, J.-B., & Lee, T. (2007). Do tighter restrictions on density retard development? Journal of Real Estate Finance and Economics, 34(2), 225–232.

    Article  Google Scholar 

  • Kono, T., Joshi, K. K., Kato, T., & Yokoi, T. (2012). Optimal regulation on building size and city boundary: An effective second-best remedy for traffic congestion externality. Regional Science and Urban Economics, 42(4), 619–630.

    Article  Google Scholar 

  • Lee, T., & Jou, J.-B. (2007). The regulation of optimal development density. Journal of Housing Economics, 16, 21–36.

    Article  Google Scholar 

  • Lee, T., & Jou, J.-B. (2010). Urban spatial development: A real options approach. Journal of Real Estate Finance and Economics, 40, 161–187.

    Article  Google Scholar 

  • Mills, E. S. (2005). Why do we have urban density control? Real Estate Economics, 33(3), 571–585.

    Article  Google Scholar 

  • Mills, E., & Oates, W. (1975). Fiscal zoning and land use controls. Lexington: Lexington Books.

    Google Scholar 

  • Pines, D., & Kono, T. (2012). FAR regulations and unpriced transport congestion. Regional Science and Urban Economics, 42, 931–937.

    Article  Google Scholar 

  • Thorsnes, P. (1997). Consistent estimates of the elasticity of substitution between land and non-land inputs in the production of housing. Journal of Urban Economics, 42, 98–108.

    Article  Google Scholar 

  • Thorsnes, P. (2000). Internalizing neighborhood externalities: The effect of subdivision size and zoning on residential lot prices. Journal of Urban Economics, 48(3), 397–418.

    Article  Google Scholar 

  • Turnbull, G. K. (1988). Residential development in an open city. Regional Science and Urban Economics, 18(2), 307–320.

    Article  Google Scholar 

  • Turnbull, G. K. (1991). A comparative dynamic analysis of zoning in a growing city. Journal of Urban Economics, 29(2), 235–248.

    Article  Google Scholar 

  • Williams, J. T. (1991). Real estate development as an option. Journal of Real Estate Finance and Economics, 4(2), 191–208.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the editor (James B. Kau), one anonymous reviewer, and participants at the Global Chinese Real Estate Congress (GCREC) 2012 annual conference for their helpful comments on earlier versions of this manuscript. We also thank Wan-Rong Hong for research assistance. Financial support under Grant 101R001-26 from College of Social Sciences, National Taiwan University, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jyh-Bang Jou or Tan (Charlene) Lee.

Appendices

Appendices

Appendix A Proof of Proposition 1

Equation (27) indicates the condition

$$ G\left({x}^{*},{D}_r(t)\right)=\left(\frac{1}{\uprho {\upbeta}_1}-\frac{x^{*}}{\uprho}-\frac{\alpha }{\uprho^2}+\frac{\uptheta {D}_r(t)}{\uprho}\right)\widehat{q}+\upvarepsilon {\widehat{q}}^{\frac{1}{\gamma }}=0, $$
(A1)

while Eq. (32) indicates the condition

$$ H\left({x}^{*},{D}_r(t)\right)=N(t)-\widehat{q}{D}_r(t)=0. $$
(A2)

Totally differentiating Eqs. (A1) and (A2) with respect to \( \widehat{q} \) yields

$$ \frac{\partial G}{\partial {x}^{*}}\frac{d{x}^{*}}{d\widehat{q}}+\frac{\partial G}{\partial {D}_r(t)}\frac{d{D}_r(t)}{d\widehat{q}}=\frac{-\partial G}{\partial \widehat{q}}, $$
(A3)

and

$$ \frac{\partial H}{\partial {x}^{*}}\frac{d{x}^{*}}{d\widehat{q}}+\frac{\partial H}{\partial {D}_r(t)}\frac{d{D}_r(t)}{d\widehat{q}}=\frac{-\partial H}{\partial \widehat{q}}, $$
(A4)

where

$$ \frac{\partial G}{\partial {x}^{*}}=-\frac{\widehat{q}}{\uprho}<0, $$
(A5)
$$ \frac{\partial G}{\partial {D}_r(t)}=\frac{\uptheta}{\uprho}\widehat{q}>0, $$
(A6)
$$ \frac{\partial H}{\partial {x}^{*}}=0, $$
(A7)
$$ \frac{\partial H}{\partial {D}_r(t)}=-\widehat{q}<0, $$
(A8)
$$ \frac{\partial G}{\partial \widehat{q}}=\left(\frac{1}{\gamma }-1\right)\upvarepsilon {\widehat{q}}^{\left(\frac{1}{\gamma}\right)-1}>0, $$
(A9)

and

$$ \frac{\partial H}{\partial \widehat{q}}=-{D}_r(t)<0. $$
(A10)

Solving Eqs. (A3) and (A4) simultaneously yields

$$ \begin{array}{l}\frac{d{x}^{*}}{d\widehat{q}}=\frac{\Delta_1}{\Delta}>0,\mathrm{if}\;{\widehat{q}}_0>\widehat{q}>{\left[\frac{\uptheta N(t)\gamma }{\varepsilon \rho \left(1-\gamma \right)}\right]}^{\gamma },\hfill \\ {}=0,\mathrm{if}\;\widehat{q}={\left[\frac{\uptheta N(t)\gamma }{\upvarepsilon \uprho \left(1-\gamma \right)}\right]}^{\gamma },\hfill \\ {}<0,\mathrm{if}\;\widehat{q}<{\left[\frac{\uptheta N(t)\gamma }{\upvarepsilon \uprho \left(1-\gamma \right)}\right]}^{\gamma },\hfill \end{array} $$
(A11)
$$ \frac{d{D}_r(t)}{d\widehat{q}}=\frac{\Delta_2}{\Delta}<0, $$
(A12)

where

$$ \Delta ={\displaystyle \underset{\left(-\right)}{\frac{\partial G}{\partial {x}^{*}}}}{\displaystyle \underset{\left(-\right)}{\frac{\partial H}{\partial {D}_r(t)}}}-{\displaystyle \underset{\left(+\right)}{\frac{\partial G}{\partial {D}_r(t)}}}{\displaystyle \underset{(0)}{\frac{\partial H}{\partial {x}^{*}}}}>0, $$
(A13)
$$ {\Delta}_1=\underset{\left(+\right)}{\frac{\partial G}{\partial {D}_r(t)}}\underset{\left(-\right)}{\frac{\partial H}{\partial \widehat{q}}}-\underset{\left(+\right)}{\frac{\partial G}{\partial \widehat{q}}}\underset{\left(-\right)}{\frac{\partial H}{\partial {D}_r(t)}}=\left[\left(\frac{1}{\gamma }-1\right)\upvarepsilon {\widehat{q}}^{\frac{1}{\gamma }}-\frac{\uptheta N(t)}{\uprho}\right], $$
(A14)

and

$$ {\Delta}_2=\underset{\left(+\right)}{\frac{\partial G}{\partial \widehat{q}}}\underset{(0)}{\frac{\partial H}{\partial {x}^{*}}}-\underset{\left(-\right)}{\frac{\partial G}{\partial {x}^{*}}}\underset{\left(-\right)}{\frac{\partial H}{\partial \widehat{q}}}<0. $$
(A15)

Given that x* = u* − y(t), it follows that the sign of du*/dq, which is the same as that of dx*/dq, is indeterminate.

Q.E.D.

Appendix B Proof of Proposition 2

Note that Eq. (32) indicates that D r (t) is independent of θ, ε, α N , and σ N . Furthermore, recall that

$$ \alpha =\uptheta {\alpha}_N\upeta, $$
(B1)

and

$$ \upsigma =\uptheta {\sigma}_N\upeta . $$
(B2)

Totally differentiating Eqs. (B1) and (B2) with respect to θ, ε, α N , and σ N , and then rearranging yields

$$ \frac{\partial \alpha }{\partial \uptheta}=\frac{\Delta_1^{\prime }}{\Delta^{\prime }}>0, $$
(B3)
$$ \frac{\partial \upsigma}{\partial \uptheta}=\frac{\Delta_2^{\prime }}{\Delta^{\prime }}>0, $$
(B4)
$$ \frac{\partial \alpha }{\partial \upvarepsilon}=\frac{\Delta_3^{\prime }}{\Delta^{\prime }}>0, $$
(B5)
$$ \frac{\partial \sigma }{\partial \upvarepsilon}=\frac{\Delta_4^{\prime }}{\Delta^{\prime }}>0, $$
(B6)
$$ \frac{\partial \alpha }{\partial {\alpha}_N}=\frac{\Delta_5^{\prime }}{\Delta^{\prime }}>0, $$
(B7)
$$ \frac{\partial \sigma }{\partial {\alpha}_N}=\frac{\Delta_6^{\prime }}{\Delta^{\prime }}<0, $$
(B8)
$$ \frac{\partial \alpha }{\partial {\upsigma}_N}=\frac{\Delta_7^{\prime }}{\Delta^{\prime }}<0, $$
(B9)
$$ \frac{\partial \upsigma}{\partial {\upsigma}_N}=\frac{\Delta_8^{\prime }}{\Delta^{\prime }}>0, $$
(B10)
$$ {\Delta}^{\prime }=1-\uptheta \underset{\left(+\right)}{\frac{\partial \upeta}{\partial {\upbeta}_1}}\left({\alpha}_N\underset{\left(-\right)}{\frac{\partial {\upbeta}_1}{\partial \alpha }}+{\sigma}_N\underset{\left(-\right)}{\frac{\partial {\upbeta}_1}{\partial \upsigma}}\right)>0, $$
(B11)
$$ {\Delta}_1^{\prime }={\alpha}_N\upeta >0, $$
(B12)
$$ {\Delta}_2^{\prime }={\sigma}_N\upeta >0, $$
(B13)
$$ {\Delta}_3^{\prime }=\uptheta {\alpha}_N{\displaystyle \underset{\left(+\right)}{\frac{\partial \upeta}{\partial \upvarepsilon}}}>0, $$
(B14)
$$ {\Delta}_4^{\prime }=\theta {\sigma}_N{\displaystyle \underset{\left(+\right)}{\frac{\partial \upeta}{\partial \upvarepsilon}}}>0, $$
(B15)
$$ {\Delta}_5^{\prime }=\uptheta \upeta \left(1-\uptheta {\sigma}_N\underset{\left(+\right)}{\frac{\partial \upeta}{\partial {\upbeta}_1}}\underset{\left(-\right)}{\frac{\partial {\upbeta}_1}{\partial \sigma }}\right)>0, $$
(B16)
$$ {\Delta}_6^{\prime }={\uptheta}^2\upeta {\sigma}_N\underset{\left(+\right)}{\frac{\partial \upeta}{\partial {\upbeta}_1}}\underset{\left(-\right)}{\frac{\partial {\upbeta}_1}{\partial \alpha }}<0, $$
(B17)
$$ {\Delta}_7^{\prime }={\uptheta}^2\upeta {\alpha}_N\underset{\left(+\right)}{\frac{\partial \upeta}{\partial {\upbeta}_1}}\underset{\left(-\right)}{\frac{\partial {\upbeta}_1}{\partial \upsigma}}<0, $$
(B18)
$$ {\Delta}_8^{\prime }=\uptheta \upeta \left(1-\uptheta {\alpha}_N\underset{\left(+\right)}{\frac{\partial \upeta}{\partial {\upbeta}_1}}\underset{\left(-\right)}{\frac{\partial {\upbeta}_1}{\partial \alpha }}\right)>0, $$
(B19)

where

$$ \frac{\partial \upeta}{\partial {\upbeta}_1}=\frac{\gamma \eta}{\left(1-\gamma \right){\upbeta}_1}>0, $$
(B20)
$$ \frac{\partial {\upbeta}_1}{\partial \alpha }=\frac{-{\upbeta}_1}{\upsigma^2{\upbeta}_1+\alpha }<0, $$
(B21)
$$ \frac{\partial \upeta}{\partial \upvarepsilon}=\frac{\gamma \eta}{\left(1-\gamma \right)\upvarepsilon}>0, $$
(B22)

and

$$ \frac{\partial {\upbeta}_1}{\partial \upsigma}=\frac{-\sigma {\upbeta}_1^2}{\sigma^2{\upbeta}_1+\alpha }<0. $$
(B23)

We find that β1β2 = − 2ρ/σ2 and β1 + β2 = − 2α2 such that \( \frac{\alpha }{\rho }-\frac{1}{\upbeta_1}=\frac{1}{\upbeta_2} \). Substituting this relationship into Eq. (30), and then totally differentiating the result with respect to θ, ε α N , and σ N yields

$$ \frac{\partial {D}_r}{\partial \uptheta}=\frac{\Delta_3}{\Delta}>0, $$
(B24)
$$ {\Delta}_3=-\underset{\left(+\right)}{\frac{\partial G}{\partial \uptheta}}\underset{\left(-\right)}{\frac{\partial H}{\partial {D}_r}}>0, $$
(B25)
$$ \frac{\partial G}{\partial \uptheta}=\frac{D_r}{\uprho}\widehat{q}-\frac{\widehat{q}}{\rho {\upbeta_1}^2}\left[\underset{\left(-\right)}{\frac{\partial {\upbeta}_1}{\partial \upsigma}}\underset{\left(+\right)}{\frac{\partial \upsigma}{\partial \uptheta}}+\underset{\left(-\right)}{\frac{\partial {\upbeta}_1}{\partial \alpha }}\underset{\left(+\right)}{\frac{\partial \alpha }{\partial \uptheta}}\right]>0, $$
(B26)
$$ \frac{\partial {D}_r(t)}{\partial \varepsilon }=\frac{\Delta_4}{\Delta}>0, $$
(B27)
$$ {\Delta}_4=-\underset{\left(+\right)}{\frac{\partial G}{\partial \upvarepsilon}}\underset{\left(-\right)}{\frac{\partial H}{\partial {D}_r}}>0, $$
(B28)
$$ \frac{\partial G}{\partial \upvarepsilon}={\widehat{q}}^{\frac{1}{\gamma }}-\frac{\widehat{q}}{\uprho {\upbeta_1}^2}\left[\underset{\left(-\right)}{\frac{\partial {\upbeta}_1}{\partial \upsigma}}\underset{\left(+\right)}{\frac{\partial \upsigma}{\partial \upvarepsilon}}+\underset{\left(-\right)}{\frac{\partial {\upbeta}_1}{\partial \alpha }}\underset{\left(+\right)}{\frac{\partial \alpha }{\partial \upvarepsilon}}\right]>0, $$
(B29)
$$ \frac{\partial {D}_r(t)}{\partial {\alpha}_N}=\frac{\Delta_5}{\Delta}<0, $$
(B30)
$$ {\Delta}_5=-\underset{\left(-\right)}{\frac{\partial G}{\partial {\alpha}_N}}\underset{\left(-\right)}{\frac{\partial H}{\partial {D}_r}}<0, $$
(B31)
$$ \frac{\partial G}{\partial {\alpha}_N}=\frac{\widehat{q}}{\rho {\beta_2}^2}\left[{\displaystyle \underset{\left(+\right)}{\frac{\partial {\upbeta}_2}{\partial \upsigma}}}{\displaystyle \underset{\left(-\right)}{\frac{\partial \upsigma}{\partial {\alpha}_N}}}+{\displaystyle \underset{\left(-\right)}{\frac{\partial {\upbeta}_2}{\partial \alpha }}}{\displaystyle \underset{\left(+\right)}{\frac{\partial \alpha }{\partial {\alpha}_N}}}\right]<0, $$
(B32)
$$ \frac{\partial {D}_r(t)}{\partial {\sigma}_N}=\frac{\Delta_6}{\Delta}>0, $$
(B33)
$$ {\Delta}_6=-\underset{\left(+\right)}{\frac{\partial G}{\partial {\upsigma}_N}}\underset{\left(-\right)}{\frac{\partial H}{\partial {D}_r}}>0, $$
(B34)
$$ \frac{\partial G}{\partial {\sigma}_N}=\frac{\widehat{q}}{\rho {\upbeta}_2^2}\left[{\displaystyle \underset{\left(+\right)}{\frac{\partial {\beta}_2}{\partial \upsigma}}}{\displaystyle \underset{\left(+\right)}{\frac{\partial \sigma }{\partial {\upsigma}_N}}}+{\displaystyle \underset{\left(-\right)}{\frac{\partial {\beta}_2}{\partial \alpha }}}{\displaystyle \underset{\left(-\right)}{\frac{\partial \alpha }{\partial {\upsigma}_N}}}\right]>0, $$
(B35)

where

$$ \frac{\partial {\upbeta}_2}{\partial \upsigma}=\frac{-\sigma {\upbeta}_2^2}{\sigma^2{\upbeta}_2+\alpha }>0, $$
(B36)
$$ \frac{\partial {\upbeta}_2}{\partial \alpha }=\frac{-{\upbeta}_2}{\sigma^2{\upbeta}_2+\alpha }<0. $$
(B37)

Q.E.D.

Appendix C Proof of Proposition 3

Differentiating R* in Eq. (29) with respect to \( \widehat{q} \) yields

$$ \frac{d{R}^{*}}{d\widehat{q}}=\left(\frac{1}{\gamma }-1\right)\uprho \upvarepsilon {\widehat{q}}^{\frac{1}{\gamma }-2}>0. $$
(C1)

Differentiating V u (x, D) in Eq. (33) with respect to \( \widehat{q} \) yields

$$ \frac{d{V}_u\left(x,D\right)}{d\widehat{q}}={\left(\frac{x}{\uprho}+\frac{\alpha }{\uprho^2}-\frac{\theta D}{\uprho}\right)}^{-\gamma /\left(1-\gamma \right)}>0,\mathrm{for}\;{D}_r>D. $$
(C2)

Differentiating V a (x, D) in Equation (34) with respect to \( \widehat{q} \) yields

$$ \frac{d{V}_a\left(x,D\right)}{d\widehat{q}}=\frac{1}{\uprho {\upbeta}_1}{e}^{\upbeta_1\left(x-{x}^{*}\right)}\left[1-\uprho \upvarepsilon {\upbeta}_1\left(\frac{1}{\gamma }-1\right){\widehat{q}}^{\frac{1}{\gamma }-1}\right]>0, $$
(C3)

given that \( \widehat{q}<{\widehat{q}}_0. \)

Q.E.D.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jou, JB., Lee, T. How Do Density Ceiling Controls Affect Housing Prices and Urban Boundaries?. J Real Estate Finan Econ 50, 219–241 (2015). https://doi.org/10.1007/s11146-014-9460-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11146-014-9460-5

Keywords

JEL Classification

Navigation