Skip to main content
Log in

Kinetic and mechanistic investigation of the ring-opening polymerization of l-lactide initiated by nBu3SnOnBu using 1H-NMR

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The kinetics of the ring-opening polymerization (ROP) of l-lactide (LL) initiated by tri-n-butyltin n-butoxide (nBu3SnOnBu) was investigated by proton nuclear magnetic resonance spectroscopy (1H-NMR). The kinetic parameters such as the rate constant (k) and the activation energy (E a ) were determined. The values of k increased with increasing temperature and initiator concentration. The E a values determined from the ROP of LL initiated by 1.0, 1.5 and 2.0 mol% of nBu3SnOnBu were 95.9, 87.8 and 72.4 kJ/mol. The molecular weight of poly(l-lactide) (PLL) was successfully controlled by adjusting nBu3SnOnBu concentration. Furthermore, the number average molecular weight (\(\bar{M}_{n}\)) of these polymers was in the range of 1.1 × 104–3.2 × 104 with molecular weight distribution of 1.4–1.9 and the molecular weight of PLL was higher than poly(ε-caprolactone) under identical synthesis conditions. Furthermore, the molecular weight of the synthesized polymers was lower than the theoretical values (\(\bar{M}_{n}\)(cal)) indicating the occurrence of transesterification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sarazin Y, Carpentier JF (2015) Discrete cationic complexes for ring-opening polymerization catalysis of cyclic esters and epoxides. Chem Rev 115(9):3564–3614

    Article  CAS  Google Scholar 

  2. Silvino AC, Martins DBAT, Rodrigues AC, Dias ML (2013) Kinetic behavior in melt state and solid state polymerization of lactide using magnesium stearate as catalyst. J Polym Environ 21:1002–1008

    Article  CAS  Google Scholar 

  3. Sobczak M (2012) Ring-opening polymerization of cyclic esters in the presence of choline/SnOct2 catalytic system. Polym Bull 68:2219–2228

    Article  CAS  Google Scholar 

  4. Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer—polycaprolactone in the 21st century. Prog Polym Sci 35:1217–1256

    Article  CAS  Google Scholar 

  5. Vaskova I, Alexy P, Bugaj P, Nahalkova A, Ferance J, Mlynsky T (2008) Biodegradable polymer packing materials based on polycaprolactone, starch and polyhydroxybutyrate. Acta Chim Slov 1:301–308

    Google Scholar 

  6. Albertsson AC, Varma IK (2003) Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules 4:1466–1486

    Article  CAS  Google Scholar 

  7. Wei Z, Liu L, Qu C, Qi M (2009) Microstructure analysis and thermal properties of l-lactide/ε-caprolactone copolymers obtained with magnesium octoate. Polymer 50:1423–1429

    Article  CAS  Google Scholar 

  8. Kowalski A, Libiszowski J, Duda A, Penczek S (2000) Polymerization of L, l-dilactide initiated by tin(II) butoxide. Macromolecules 33:1964–1971

    Article  CAS  Google Scholar 

  9. Mecerreyes D, Jerome R, Dubois P (1999) Novel macromolecular architectures based on aliphatic polyesters: relevance of the “coordination-insertion” ring-opening polymerization. Adv Polym Sci 147:1–59

    Article  CAS  Google Scholar 

  10. Limwanich W, Punyodom W, Kungwan N, Meepowpan P (2015) DSC kinetics analysis for the synthesis of three-arms poly(ε-caprolactone) using aluminum tri-sec-butoxide as initiator. Int J Chem Kinet 47:734–743

    Article  CAS  Google Scholar 

  11. Wei Z, Kiu L, Gao J, Wang P, Qi M (2008) The copolymerization of l-lactide and ε-caprolactone using magnesium octoate as a catalyst. China Chem Lett 19:363–366

    Article  CAS  Google Scholar 

  12. Meelua W, Molloy R, Meepowpan P, Punyodom W (2012) Isoconversional kinetic analysis of ring-opening polymerization of ε-caprolactone: steric influence of titanium(IV) alkoxides as initiators. J Polym Res 19:9799

    Article  Google Scholar 

  13. Contreras JM, Medina D, Carrasuero FL, Contreras RR (2013) Ring-opening polymerization of ε-caprolactone initiated by samarium acetate. J Polym Res 20:244

    Article  Google Scholar 

  14. Wang L, Poirier V, Ghiotto F, Bochmann M, Cannon RD, Carpentier JF, Sarazin Y (2014) Kinetic analysis of the immortal ring-opening polymerization of cyclic esters: a case study with tin(II) catalyst. Macromolecules 47:2574–2584

    Article  CAS  Google Scholar 

  15. Chrisholm MH, Gallueci JC, Krempner C (2007) Ring-opening polymerization of l-lactide by organotin(IV) alkoxides, R2Sn(OPri)2: estimation of the activation parameters. Polyhedron 26:4436–4444

    Article  Google Scholar 

  16. Kricheldorf HR, ThienBen HH (2004) Polylactones 60: comparison of the reactivity of Bu3SnOEt, Bu2Sn(OEt)2, and BuSn(OEt)3 as initiators of ε-caprolactone. J Macromol Sci Pure Appl Chem 41:335–343

    Article  Google Scholar 

  17. Kricheldorf HR, Lee SR, Bush S (1996) Polylactones 36. Macrocyclic polymerization of lactides with cyclic Bu2Sn initiators derived from 1,2-ethanediol, 2-mercaptoethanol, and 1,2-dimercaptoethane. Macromolecules 29:1375–1381

    Article  CAS  Google Scholar 

  18. Kricheldorf HR, Sumbel MV, Saunders IK (1991) Polymerization of ε-caprolactone with tributyltin derivatives: a mechanistic study. Macromolecules 24:1944–1949

    Article  CAS  Google Scholar 

  19. Limwanich W, Meepowpan P, Nalampang K, Kungwan N, Molloy R, Punyodom W (2015) Kinetics and thermodynamics analysis for ring-opening polymerization of ε-caprolactone initiated by tributyltin n-butoxide using differential scanning calorimetry. J Therm Anal Calorim 119:567–579

    Article  CAS  Google Scholar 

  20. Mazzaro R, Gracia I, Rodriguez JF, Storti G, Morbidelli M (2012) Kinetics of the ring-opening polymerization of d,l-lactide using zinc(II) octoate as catalyst. Polym Int 61:265–273

    Article  Google Scholar 

  21. Li P, Zerroukhi A, Chen J, Chalamet Y, Jeanmaire T, Xia Z (2009) Synthesis of poly(ɛ-caprolactone)-block-poly(n-butyl acrylate) by combining ring-opening polymerization and atom transfer radical polymerization with Ti[OCH2CCl3]4 as difunctional initiator: I. Kinetic study of Ti[OCH2CCl3]4 initiated ring-opening polymerization of ɛ-caprolactone. Polymer 50:1109–1117

    Article  CAS  Google Scholar 

  22. Stjerndahl A, Wistrand AF, Albertsson AC (2007) Industrial utilization of tin-initiated resorbable polymers: synthesis on a large scale with a low amount of initiator residue. Biomacromolecules 8:937–940

    Article  CAS  Google Scholar 

  23. Penzcek S, Cypryk M, Duda A, Kubisa P, Slomkowski S (2007) Living ring-opening polymerizations of heterocyclic monomers. Prog Polym Sci 32:247–282

    Article  Google Scholar 

  24. Li P, Zerroukhi A, Chen J, Chalamet Y, Jeanmaire T, Xia Z (2008) Kinetics study of Ti[O(CH2)4OCH=CH2]4 initiated ring-opening polymerization of ε-caprolactone by differential scanning calorimetry. J Appl Polym Sci 110(6):3990–3998

    Article  CAS  Google Scholar 

  25. Lente G (2015) Deterministic kinetics in chemistry and systems biology. Springer, Heidelberg

    Book  Google Scholar 

  26. Saunders IK, Kricheldorf HR (1998) Polylactones 39. Zn lactate-catalyzed copolymerization of l-lactide with glycolide or ε-caprolactone. Macromol Chem Phys 199:1081–1087

    Google Scholar 

  27. Stridberg KM, Ryner M, Albertsson AC (2002) Controlled ring-opening polymerization: polymers with designed macromolecular architecture. Adv Polym Sci 157:41–65

    Article  Google Scholar 

  28. Coulembier O, Degee P, Hedrick JL, Dubois P (2006) From controlled ring-opening polymerization to biodegradable aliphatic polyester: especially poly(β-malic acid) derivatives. Prog Polym Sci 31:723–747

    Article  CAS  Google Scholar 

  29. Ryner M, Finne A, Albertsson AC, Kricheldorf HR (2001) l-lactide macroonomer synthesis initiated by new cylic tin alkoxides functionalized for brushlike structures. Macromolecules 34:7281–7287

    Article  CAS  Google Scholar 

Download references

Acknowledgments

W. Limwanich would like to thank the Research Professional Development Project under the Science Achievement Scholarship of Thailand (SAST) for graduate fellowship. The authors wish to thank the financial supports from the National Research Council of Thailand (NRCT) and the National Research University Project under Thailand’s Office of the Higher Education Commission. Department of Chemistry, Faculty of Science and the Graduate School of Chiang Mai University are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Winita Punyodom.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Limwanich, W., Meepowpan, P., Kungwan, N. et al. Kinetic and mechanistic investigation of the ring-opening polymerization of l-lactide initiated by nBu3SnOnBu using 1H-NMR. Reac Kinet Mech Cat 119, 381–392 (2016). https://doi.org/10.1007/s11144-016-1062-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-016-1062-1

Keywords

Navigation