Skip to main content
Log in

Tuning Pt dispersion and oxygen mobility of Pt/γ-Al2O3 by Si addition for CO oxidation

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

γ-Al2O3 was doped with TEOS solution to obtain SiO2 content in the range of 0.6–12.4 wt%. Pt dispersion was effectively enhanced by 82 and 45 % by doping 0.6 and 1.2 wt% SiO2, and was slightly declined afterward. However, oxygen mobility as described by the reduction of basicity was monotonically decreased with increasing SiO2 content. The results from CO oxidation tests reveal a linear relationship between TOFs and desorbed-CO2. It is suggested that oxygen mobility plays a distinct role in controlling the surface reaction between CO and O surface species, which were activated by different adjacent Pt clusters. The highly dispersed Pt catalysts obtained by this technique can also be applied to other structure-insensitive reactions such as propane dehydrogenation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kwak JH, Hu JZ, Mei D, Yi CW, Kim DH, Peden CHF, Allard LF, Szanyi J (2009) Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on gamma-Al2O3. Science 325(5948):1670–1673

    Article  CAS  Google Scholar 

  2. Thomas JM, Saghi Z, Gai PL (2011) Can a single atom serve as the active site in some heterogeneous catalysts? Top Catal 54(10–12):588–594

    Article  CAS  Google Scholar 

  3. Anderson JA, Mordente MGV, Rochester CH (1989) Infrared study of the effects of oxidation/reducation treatments on Pt dispersion in Pt/Al2O3 catalysts. J Chem Soc Faraday Trans 1 85(9):2983–2990

    Article  CAS  Google Scholar 

  4. Zhang G, Yang Z, Huang C, Zhang W, Wang Y (2015) Small-sized and highly dispersed Pt nanoparticles loading on graphite nanoplatelets as an effective catalyst for methanol oxidation. Nanoscale 7(22):10170–10177

    Article  CAS  Google Scholar 

  5. Sun GX, Mu XL, Zhang Y, Cui Y, Xia GM, Chen Z (2011) Rare earth metal modified CuO/gamma-Al2O3 catalysts in the CO oxidation. Catal Commun 12(5):349–352

    Article  CAS  Google Scholar 

  6. Tou A, Einaga H, Teraoka Y (2015) Effect of co-deposition of LaFeO3 on the catalytic properties of Pd on Al2O3 support for CO–O2 and NO–CO reactions. Reac Kinet Mech Cat 114(2):409–420

    Article  CAS  Google Scholar 

  7. Marcilly C (2003) Present status and future trends in catalysis for refining and petrochemicals. J Catal 216(1–2):47–62

    Article  CAS  Google Scholar 

  8. Beguin B, Garbowski E, Primet M (1991) Stabilization of alumina toward thermal sintering by silicon addition. J Catal 127(2):595–604

    Article  CAS  Google Scholar 

  9. Jagtap N, Umbarkar SB, Miquel P, Granger P, Dongare MK (2009) Support modification to improve the sulphur tolerance of Ag/Al2O3 for SCR of NOx with propene under lean-burn conditions. Appl Catal B: Environ 90(3–4):416–425

    Article  CAS  Google Scholar 

  10. Chotigkrai N, Panpranot J, Praserthdam P (2014) Comparison of the effects of chi phase- and Si-modified gamma-Al2O3 supported Pt catalysts in CO oxidation. Catal Commun 56:92–95

    Article  CAS  Google Scholar 

  11. Vu BK, Shin EW (2011) Influence of oxygen mobility over supported Pt Catalysts on combustion temperature of coke generated in propane dehydrogenation. Catal Lett 141(5):699–704

    Article  CAS  Google Scholar 

  12. Martin D, Duprez D (1996) Mobility of surface species on oxides. 1. Isotopic exchange O-18(2) with O-16 of SiO2, Al2O3, ZrO2, MgO, CeO2, and CeO2-Al2O3. Activation by noble metals. Correlation with oxide basicity. J Phys Chem 100(22):9429–9438

    Article  CAS  Google Scholar 

  13. Engel T, Ertl G (1979) Elementary steps in the catalytic oxidation of carbon monoxide on platinum metals. In: Eley DD, Pines H, Paul BW (eds) Advances in catalysis. Academic Press, Waltham

    Google Scholar 

  14. Royer S, Duprez D (2011) Catalytic oxidation of carbon monoxide over transition metal oxides. Chemcatchem 3(1):24–65

    Article  CAS  Google Scholar 

  15. Davran-Candan T, Demir M, Yildirim R (2011) Analysis of reaction mechanisms and kinetics of preferential CO oxidation over Au/γ-Al2O3. Reac Kinet Mech Cat 104(2):389–398

    Article  CAS  Google Scholar 

  16. Bergeret G, Gallezot P (2008) Particle size and dispersion measurements. In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  17. Morajkar PP, Fernandes JB (2010) A new facile method to synthesize mesoporous γ-Al2O3 of high surface area and catalytic activity. Catal Commun 11(5):414–418

    Article  CAS  Google Scholar 

  18. Narula CK, Rokosz M, Allard LF, Kudla RJ, Chattha MS (2000) Sol-gel processed silica-alumina materials for diesel engine emission reduction catalysts. Langmuir 16(8):3818–3822

    Article  CAS  Google Scholar 

  19. Magendie G, Guichard B, Chaumonnot A, Quoineaud AA, Legens C, Espinat D (2013) Toward a better understanding of residue hydroconversion catalysts using NiMo catalysts supported over silica grafted Al2O3. Appl Catal A Gen 468:216–229

    Article  CAS  Google Scholar 

  20. Uchisawa J, Tango T, Caravella A, Hara S, Haneda M, Murakami T, Nakagawa H, Nanba T, Obuchi A (2014) Effects of the extent of silica doping and the mesopore size of an alumina support on activity as a diesel oxidation catalyst. Ind Eng Chem Res 53(19):7992–7998

    Article  CAS  Google Scholar 

  21. Park C-M, Choi W, Hwa Y, Kim J-H, Jeong G, Sohn H-J (2010) Characterizations and electrochemical behaviors of disproportionated SiO and its composite for rechargeable Li-ion batteries. J Mater Chem 20(23):4854–4860

    Article  CAS  Google Scholar 

  22. Bradley SA, Sinkler W, Blom DA, Bigelow W, Voyles PM, Allard LF (2012) Behavior of Pt atoms on oxide supports during reduction treatments at elevated temperatures, characterized by aberration corrected stem imaging. Catal Lett 142(2):176–182

    Article  CAS  Google Scholar 

  23. Lin W, Herzing AA, Kiely CJ, Wachs IE (2008) Probing metal-support interactions under oxidizing and reducing conditions: in situ raman and infrared spectroscopic and scanning transmission electron microscopic-X-ray energy-dispersive spectroscopic investigation of supported platinum catalysts. J Phys Chem C 112(15):5942–5951

    Article  CAS  Google Scholar 

  24. Hippe C, Lamber R, SchulzEkloff G, Schubert U (1997) Influence of the strong metal-support interaction on the CO chemisorption at a Pt/SiO2 catalyst. Catal Lett 43(3–4):195–199

    Article  CAS  Google Scholar 

  25. Lamber R, Romanowski W (1987) Dispersion changes of platinum supported on silica glass during thermal treatment in oxygen and hydrogen atmospheres. J Catal 105(1):213–226

    Article  CAS  Google Scholar 

  26. Karakaya C, Deutschmann O (2012) A simple method for CO chemisorption studies under continuous flow: adsorption and desorption behavior of Pt/Al2O3 catalysts. Appl Catal A Gen 445–446:221–230

    Article  Google Scholar 

  27. Tanksale A, Beltramini JN, Dumesic JA, Lu GQ (2008) Effect of Pt and Pd promoter on Ni supported catalysts—A TPR/TPO/TPD and microcalorimetry study. J Catal 258(2):366–377

    Article  CAS  Google Scholar 

  28. Gould TD, Lubers AM, Corpuz AR, Weimer AW, Falconer JL, Medlin JW (2015) Controlling nanoscale properties of supported platinum catalysts through atomic layer deposition. ACS Catal 5(2):1344–1352

    Article  CAS  Google Scholar 

  29. Altman EI, Gorte RJ (1986) The desorption of CO from small Pt particles on Al2O3. Surf Sci 172(1):71–80

    Article  CAS  Google Scholar 

  30. Miura H, Gonzalez RD (1982) Temperature-programmed desorption and temperature-programmed reaction studies of carbon monoxide over well-characterized silica-supported platinum-ruthenium bimetallic clusters. J Phys Chem 86(9):1577–1582

    Article  CAS  Google Scholar 

  31. Tanaka H, Kuriyama M, Ishida Y, Ito S-I, Kubota T, Miyao T, Naito S, Tomishige K, Kunimori K (2008) Preferential CO oxidation in hydrogen-rich stream over Pt catalysts modified with alkali metals: Part II. Catalyst characterization and role of alkali metals. Appl Catal A Gen 343(1–2):125–133

    Article  CAS  Google Scholar 

  32. Marino F, Descorme C, Duprez D (2004) Noble metal catalysts for the preferential oxidation of carbon monoxide in the presence of hydrogen (PROX). Appl Catal B Environ 54(1):59–66

    Article  CAS  Google Scholar 

  33. Widmann D, Behm RJ (2014) Activation of molecular oxygen and the nature of the active oxygen species for CO oxidation on oxide supported Au catalysts. Acc Chem Res 47(3):740–749

    Article  CAS  Google Scholar 

  34. Ozawa M, Okouchi T, Haneda M (2015) Three way catalytic activity of thermally degenerated Pt/Al2O3 and Pt/CeO2-ZrO2 modified Al2O3 model catalysts. Catal Today 242:329–337

    Article  CAS  Google Scholar 

  35. Dimitrov V, Komatsu T (2012) Correlation among electronegativity, cation polarizability, optical basicity and single bond strength of simple oxides. J Solid State Chem 196:574–578

    Article  CAS  Google Scholar 

  36. Boudart M, Rumpf F (1987) The catalytic oxidation of CO and structure insensitivity. React Kinet Catal Lett 35(1–2):95–105

    Article  CAS  Google Scholar 

  37. Haneda M, Watanabe T, Kamiuchi N, Ozawa M (2013) Effect of platinum dispersion on the catalytic activity of Pt/Al2O3 for the oxidation of carbon monoxide and propene. Appl Catal B Environ 142:8–14

    Article  Google Scholar 

  38. Lee CH, Chen YW (1997) Effect of basic additives on Pt/Al2O3 for CO and propylene oxidation under oxygen-deficient conditions. Ind Eng Chem Res 36(5):1498–1506

    Article  CAS  Google Scholar 

  39. Minemura Y, Kuriyama M, Ito S, Tomishige K, Kunimori K (2006) Additive effect of alkali metal ions on preferential CO oxidation over Pt/Al2O3. Catal Commun 7(9):623–626

    Article  CAS  Google Scholar 

  40. Sattler JJHB, Ruiz-Martinez J, Santillan-Jimenez E, Weckhuysen BM (2014) Catalytic Dehydrogenation of light alkanes on metals and metal oxides. Chem Rev 114(20):10613–10653

    Article  CAS  Google Scholar 

  41. Regali F, Liotta LF, Venezia AM, Boutonnet M, Jaras S (2014) Hydroconversion of n-hexadecane on Pt/silica-alumina catalysts: effect of metal loading and support acidity on bifunctional and hydrogenolytic activity. Appl Catal A Gen 469:328–339

    Article  CAS  Google Scholar 

  42. Zhong FL, Zhong YJ, Xiao YH, Cai GH, Wei KM (2011) Effect of Si-doping on thermal stability and diesel oxidation activity of Pt supported porous γ-Al2O3 monolithic catalyst. Catal Lett 141(12):1828–1837

    Article  CAS  Google Scholar 

  43. Kim MY, Kim YA, Jeong KE, Chae HJ, Kim CU, Jeong SY, Han J, Park ED (2012) Effect of Al content on hydrocracking of n-paraffin over Pt/SiO2-Al2O3. Catal Commun 26:78–82

    Article  CAS  Google Scholar 

  44. Yoshida H, Yazawa Y, Hattori T (2003) Effects of support and additive on oxidation state and activity of Pt catalyst in propane combustion. Catal Today 87(1–4):19–28

    Article  CAS  Google Scholar 

  45. Shibata J, Hashimoto M, Shimizu K, Yoshida H, Hattori T, Satsuma A (2004) Factors controlling activity and selectivity for SCR of NO by hydrogen over supported platinum catalysts. J Phys Chem B 108(47):18327–18335

    Article  CAS  Google Scholar 

  46. van den Brink RW, Krzan M, Feijen-Jeurissen MMR, Louw R, Mulder P (2000) The role of the support and dispersion in the catalytic combustion of chlorobenzene on noble metal based catalysts. Appl Catal B Environ 24(3–4):255–264

    Article  Google Scholar 

  47. Shabaker JW, Huber GW, Davda RR, Cortright RD, Dumesic JA (2003) Aqueous-phase reforming of ethylene glycol over supported platinum catalysts. Catal Lett 88(1–2):1–8

    Article  CAS  Google Scholar 

  48. Liu CY, Shao ZF, Xiao ZH, Williams CT, Liang CH (2012) Hydrodeoxygenation of benzofuran over silica-alumina-supported Pt, Pd, and Pt-Pd catalysts. Energy Fuels 26(7):4205–4211

    Article  CAS  Google Scholar 

  49. Kim KB, Kim YH, Song KS, Park ED (2011) PROPANE combustion over Pt catalysts supported on zeolites. Rev Adv Mater Sci 28(1):35–39

    CAS  Google Scholar 

  50. Garetto TF, Rincon E, Apesteguia CR (2004) Deep oxidation of propane on Pt-supported catalysts: drastic turnover rate enhancement using zeolite supports. Appl Catal B Environ 48(3):167–174

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the financial supports from The Royal Golden Jubilee Ph.D. scholarship of Thailand Research Fund for N. C. (Grant No. PHD/0246/2552). The Ratchadaphiseksomphot Endowment Fund of Chulalongkorn University (CU-56-654-AM) is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piyasan Praserthdam.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3119 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chotigkrai, N., Hochin, Y., Panpranot, J. et al. Tuning Pt dispersion and oxygen mobility of Pt/γ-Al2O3 by Si addition for CO oxidation. Reac Kinet Mech Cat 117, 565–581 (2016). https://doi.org/10.1007/s11144-015-0969-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-015-0969-2

Keywords

Navigation