Skip to main content
Log in

Influence of Oxygen Mobility over Supported Pt Catalysts on Combustion Temperature of Coke Generated in Propane Dehydrogenation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Five supported Pt catalysts (Pt/SBA-15, Pt/Al2O3, Pt/MgO, Pt/CeO2, and Pt/Ce0.63Zr0.37O2 ) were prepared to systematically investigate the influence of oxygen mobility over the support on combustion temperatures of coke produced in propane dehydrogenation. A strong correlation between the oxygen mobility of the supports and the combustion temperature of the coke was observed. The coke combustion temperatures increased following the reverse order of oxygen mobility of the supports: CeZrO2 > CeO2 > MgO > Al2O3 > SBA-15, implying that the oxygen transfer over supports was a rate-determining step in the coke combustion process.

Graphical Abstract

[Coke combustion was performed in a TGA instrument under air flow with a heating rate of 5 °C/min. The support with higher oxygen mobility resulted in a lower coke combustion temperature.]

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Trimm DL (2008) In: Ertl G, Knözinger H (eds) Handbook of heterogeneous catalysis. Wiley-VCH Verlag GmbH, Weinheim, Berlin, Germany, chapter 7

  2. Bhasin MM, McCain JH, Vora BV, Imai T, Pujadó PR (2001) Appl Catal A 221:397

    Article  CAS  Google Scholar 

  3. Rase HF (2000) Handbook of commercial catalysts: heterogeneous catalysts. CRC Press: University of Texas, Austin, TX, USA

    Google Scholar 

  4. Xiang Li R, Bew Wong N, Chung Tin K, Ru Chen J, Jun Li X (1998) Catal Lett 50:219

    Article  Google Scholar 

  5. Aguilar‐Ríos G, Salas P, Valenzuela MA, Armendáriz H, Wang JA, Salmones J (1999) Catal Lett 60:21

    Article  Google Scholar 

  6. Bocanegra SA, de Miguel SR, Castro AA, Scelza OA (2004) Catal Lett 96:129

    Article  CAS  Google Scholar 

  7. Yu C, Ge Q, Xu H, Li W (2006) Catal Lett 112:197

    Article  CAS  Google Scholar 

  8. de Miguel S, Bocanegra S, Vilella I, Guerrero-Ruiz A, Scelza O (2007) Catal Lett 119:5

    Article  Google Scholar 

  9. Wang Y, Wang Y, Wang S, Guo X, Zhang SM, Huang WP, Wu S (2009) Catal Lett 132:472

    Article  CAS  Google Scholar 

  10. Sanfilippo D (2000) CATTECH 4:56

    Article  CAS  Google Scholar 

  11. Walker PL Jr, Rusinko F Jr, Austin LG (1959) Adv Catal 11:133

    Article  CAS  Google Scholar 

  12. Bartholomew C (2002) Encyclopedia of catalysis. John Wiley & Sons, Hoboken, New Jersey, USA

  13. Didillon B (1996) Institut, Francais Du Petrole, US Pat 5573988

  14. Cottrell PR, Fettis ME (1992) Uop, US Pat 5087792

  15. Landolt GR, Mchale WD, Schoennagel HJ (1982) Mobil Oil Corporation, US Pat 4359400

  16. Chevron Research Company (1975) US Pat 3875049

  17. Furimsky E, Massoth FE (1993) Catal Today 17:537

    Article  CAS  Google Scholar 

  18. Vu B, Bok S, Ahn I, Shin E (2009) Catal Lett 133:376

    Article  CAS  Google Scholar 

  19. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548

    Article  CAS  Google Scholar 

  20. Anderson MA, Sheng G (1993) Wisconsin Alumni Research Foundation US Pat 5208190

  21. Laha SC, Ryoo R (2003) Chem Commun 17:2138

    Article  Google Scholar 

  22. Ozawa T (1975) J Therm Anal Calorim 7:601

    Article  CAS  Google Scholar 

  23. Badini C, Saracco G, Russo N, Specchia V (2000) Catal Lett 69:207

    Article  CAS  Google Scholar 

  24. Ray JC, You KS, Ahn JW, Ahn WS (2007) Microporous Mesoporous Mater 100:183

    Article  CAS  Google Scholar 

  25. Hori CE, Permana H, SimonNg KYS, Brenner A, More K, Rahmoeller KM, Belton D (1998) Appl Catal B 16:105

    Article  CAS  Google Scholar 

  26. Martin D, Duprez D (1996) J Phys Chem 100:9429

    Article  CAS  Google Scholar 

  27. Madier Y, Descorme C, Le Govic AM, Duprez D (1999) J Phys Chem B 103:10999

    Article  CAS  Google Scholar 

  28. Duprez D, Descorme C, Birchem T, Rohart E (2001) Top Catal 49:16

    Google Scholar 

  29. Afonso JC, Schmal M, Fréty R (1994) Fuel Process Technol 41:13

    Article  CAS  Google Scholar 

  30. Ortega JM, Gayubo AG, Aguayo AT, Benito PL, Bilbao J (1997) Ind Eng Chem Res 36:60

    Article  CAS  Google Scholar 

  31. Vu B, Song MB, Park S, Lee Y, Ahn IY, Suh Y, Suh DJ, Kim W, Koh H, Choi Y, Shin EW (2010) Korean J Chem Eng (in press)

  32. Parera JM, Traffano EM, Musso JC, Pieck CL (1983) Stud Surf Sci Catal 17:101

    Article  CAS  Google Scholar 

  33. Moljord K, Magnoux P, Guisnet M (1995) Appl Catal A 121:245

    Article  CAS  Google Scholar 

  34. Marcilla A, Gómez-Siurana A, Valdés FJ (2008) Appl Catal A 334:20

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Energy Efficiency & Resources program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Ministry of Knowledge Economy (MKE) of the Korean government (No. 2007MCC24P0230202009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun Woo Shin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vu, B.K., Shin, E.W. Influence of Oxygen Mobility over Supported Pt Catalysts on Combustion Temperature of Coke Generated in Propane Dehydrogenation. Catal Lett 141, 699–704 (2011). https://doi.org/10.1007/s10562-010-0527-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-010-0527-5

Keywords

Navigation