Skip to main content
Log in

Effect of Si-Doping on Thermal Stability and Diesel Oxidation Activity of Pt Supported Porous γ-Al2O3 Monolithic Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of different contents of Si-stabilized aluminas with high thermal stability were synthesized by the coprecipitation method and were used as the support of Pt diesel oxidation catalysts. The physicochemical properties of SiO2–Al2O3 (SA) and the catalytic performance of Pt/SiO2–Al2O3 (Pt/SA) were characterized in detail by TG–DTA, XRD, infrared spectroscopy, N2 adsorption, NMR, CO-TPD, and the catalytic activity evaluation of CO and C3H6 oxidations as well as NO reduction in simulating diesel exhaust. The results indicate that the presence of Si can remarkably enhance the thermal stability and phase transition temperature of alumina. It was also found that the catalytic activity is virtually independent of surface area, and only appropriate amount of Si doping can improve the diesel oxidation activity, as compared to pure Pt/Al2O3 under the same conditions as a result of the better dispersion of Pt on SA–W supports.

Graphical Abstract

The appropriate amount of Si doped can enhance the diesel oxidation activity of Pt/Al2O3 monolithic catalyst at the same condition as the result of the better dispersion of Pt on SiO2–Al2O3 samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pantaleo G, Liotta LF, Venezia AM, Deganello G, Ezzo EM, ElKherbawi MA, Atia H (2009) Mater Chem and Phys 114:604

    Article  CAS  Google Scholar 

  2. Kaspar J, Monte RD, Fornasiero P (2001) Top Catal 16:83

    Article  Google Scholar 

  3. Weng X, Perston B, Wang XZ (2009) Appl Catal B 90:405

    Article  CAS  Google Scholar 

  4. Kabalka GW, Pagni RM (1997) Tetrahedron 53:7999

    Article  CAS  Google Scholar 

  5. Chuah GK, Jaenicke S, Xu TH (2000) Micropor Mesopor Mat 37:345

    Article  CAS  Google Scholar 

  6. Fitzgerald JJ, Piedra G, Dec SF, Seger M, Marciel GE (1997) J Am Chem Soc 119:7832

    Article  CAS  Google Scholar 

  7. Rinaldi R, Schuchardt U (2005) J Catal 236:335

    Article  CAS  Google Scholar 

  8. Horiuchi T, Chen L, Osaki T, Sugiyama T, Suzuki K, Mori T (1999) Catal Lett 58:89

    Article  CAS  Google Scholar 

  9. Ahlstrom-Silversand AF, Odenbrand CUI (1997) Appl Catal A 153:157

    Article  Google Scholar 

  10. Farrauto RJ, Voss KE (1996) Appl Catal B 10:29

    Article  CAS  Google Scholar 

  11. Bazin P, Saur O, Meunier FC, Daturi M, Lavalley JC, Le Govic AM, Harlé V, Blanchard G (2009) Appl Catal B 90:368

    Article  CAS  Google Scholar 

  12. Rohart E, Bellière-Baca V, Yokota K, Harlé V, Pitois C (2007) Top Catal 42–43:71

    Article  Google Scholar 

  13. Wang X, Guo Y, Lu G, Hu Y, Jiang L, Guo Y, Zhang Z (2007) Catal Today 126:369

    Article  CAS  Google Scholar 

  14. Hernandez C, Pierre AC (2001) J Sol-Gel Sci Tech 20:227

    Article  CAS  Google Scholar 

  15. Zhou CH, Li XN, Ge ZH, Li QW, Tong DS (2004) Catal Today 93–95:607

    Article  Google Scholar 

  16. Nagai N, Hashimoto H (2001) Appl Surf Sci 172:307

    Article  CAS  Google Scholar 

  17. Pashkova VO, Sarv P, Derewiński M (2007) Stud Surf Sci Catal 170:289

    Article  Google Scholar 

  18. Xu M, Harris KDM, Thomas JM (2009) Solid State Nucl Mag 35:93

    Article  CAS  Google Scholar 

  19. Narula CK, Rokosz M (2000) Langmuir 16:3818

    Article  CAS  Google Scholar 

  20. Liu W, Xu Y, Wong S-T, Wang L, Qiu J, Yang N (1997) J Mol Catal A 120:257

    Article  CAS  Google Scholar 

  21. Zhao H, Hiragushi K, Mizota Y (2002) J Eur Ceram Soc 22:1483

    Article  CAS  Google Scholar 

  22. O’Dell LA, Savinb SLP, Chadwickb AV, Smith ME (2007) Solid State Nucl Mag 31:169

    Article  Google Scholar 

  23. Pandya A, Mmbaga J, Hayes RE, Hauptmann W, Votsmeier M (2009) Top Catal 52:1929

    Article  CAS  Google Scholar 

  24. Larese C, López Granados M, Cabello Galisteo F, Mariscal R, Fierro JLG (2006) Appl Catal B 62:132

    Article  CAS  Google Scholar 

  25. Kolli T, Kanerva T, Lappalainen P, Huuhtanen M, Vippola M, Kinnunen T, Kallinen K, LepistÖ T, Lahtinen J, Keiski RL (2009) Top Catal 52:2025

    Article  CAS  Google Scholar 

  26. Efthimiadis EA, Christoforou SC, Nikolopoulos AA, Vasalos IA (1999) Appl Catal B 22:91

    Article  CAS  Google Scholar 

  27. Papavasiliou A, Tsetsekou A, Matsouka V, Konsolakis M, Yentekakis IV, Boukos N (2009) Appl Catal B 90:162

    Article  CAS  Google Scholar 

  28. Pengpanich S, Meeyoo V, Rirksomboon T, Bunyakiat K (2002) Appl Catal A 234:221

    Article  CAS  Google Scholar 

  29. Henk MG, Williamson WB, Silver RG (1992) SAE 920368

Download references

Acknowledgment

This study was financially supported by Key Projects in the National Science & Technology Pillar Program (Grant No. 2007BAE08B01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kemei Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, F., Zhong, Y., Xiao, Y. et al. Effect of Si-Doping on Thermal Stability and Diesel Oxidation Activity of Pt Supported Porous γ-Al2O3 Monolithic Catalyst. Catal Lett 141, 1828–1837 (2011). https://doi.org/10.1007/s10562-011-0711-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-011-0711-2

Keywords

Navigation