Skip to main content
Log in

The action of VOx doping on Au/CeO2 catalysts for CO oxidation and water–gas shift reaction

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

VOx–CeO2 oxides with different Ce/V molar ratios were prepared via solution combustion synthesis method. Au/VOx–CeO2 catalysts were obtained by the impregnation method for CO oxidation and water–gas shift reaction (WGSR). The textural properties and structures of these materials were investigated by the techniques such as nitrogen physical adsorption, X-ray diffraction, UV–Visible spectroscopy, temperature-programmed reduction, and X-ray photoelectron spectroscopy. The following activity orders are obtained: Au/CeO2 ~ Au/Ce9V1 > Au/Ce7V3 > Au/Ce5V5 for CO oxidation at 20 °C and Au/Ce9V1 > Au/CeO2 > Au/Ce7V3 > Au/Ce5V5 for WGSR at 350 °C. CO oxidation proceeds more easily than WGSR at the same catalyst. The catalysts with low VOx content show better activities. The addition of high VOx content to CeO2 leads to the agglomeration of polymeric VOx or polyvanadate species. These species make the reduction of CeO2 more difficult and the interaction between gold and CeO2 weak. The presence of Au effectively enhances the reduction of CeO2 to lower temperatures. The interaction between gold, VOx, and CeO2 is favorable to improving the activity of Au/VOx–CeO2 catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Haruta M (2011) Role of perimeter interfaces in catalysis by gold nanoparticles. Faraday Discuss 152:11–32

    Article  CAS  Google Scholar 

  2. Cortie MB, van der Lingen E (2002) Catalytic gold nano-particles. Mater Forum 26:1–14

    CAS  Google Scholar 

  3. Shekhar M, Wang J, Lee W-S, Williams WD, Kim SM, Stach EA, Miller JT, Delgass WN, Ribeiro FH (2012) Size and support effects for the water–gas shift catalysis over gold nanoparticles supported on model Al2O3 and TiO2. J Am Chem Soc 134:4700–4708

    Article  CAS  Google Scholar 

  4. Casaletto MP, Longo A, Venezia AM, Martorana A, Prestianni A (2006) Metal-support and preparation influence on the structural and electronic properties of gold catalysts. Appl Catal A: Gen 302:309–316

    Article  CAS  Google Scholar 

  5. Fu Q, Saltsburg H, Flytzani-Stephanopoulos M (2003) Active nonmetallic Au and Pt species on CeO2-based water-gas shift catalysts. Science 301:935–938

    Article  CAS  Google Scholar 

  6. Rodriguez JA, Ma S, Liu P, Hrbek J, Evans J, Pérez M (2007) Activity of CeOx and TiOx nanoparticles grown on Au(111) in the water-gas shift reaction. Science 318:1757–1760

    Article  CAS  Google Scholar 

  7. Karpenko A, Leppelt R, Plzak V, Behm RJ (2007) The role of cationic Au3+ and nonionic Au0 species in the low-temperature water–gas shift reaction on Au/CeO2 catalysts. J Catal 252:231–242

    Article  CAS  Google Scholar 

  8. Vindigni I, Manzoli M, Damin A, Tabakova T, Zecchina A (2011) Surface and inner defects in Au/CeO2 WGS catalysts: relation between Raman properties, reactivity and morphology. Chem Eur J 17:4356–4361

    Article  CAS  Google Scholar 

  9. Tao F, Ma Z (2013) Water–gas shift on gold catalysts: catalyst systems and fundamental studies. Phys Chem Chem Phys 15:15260–15270

    Article  CAS  Google Scholar 

  10. Carabineiro SAC, Bastos SST, Órfão JJM, Pereira MFR, Delgado JJ, Figueiredo JL (2010) Exotemplated ceria catalysts with gold for CO oxidation. Appl Catal A 381:150–160

    Article  CAS  Google Scholar 

  11. Carabineiro SAC, Silva AMT, Dražić G, Tavares PB, Figueiredo JL (2010) Gold nanoparticles on ceria supports for the oxidation of carbon monoxide. Catal Today 154:21–30

    Article  CAS  Google Scholar 

  12. Carabineiro SAC, Silva AMT, Dražić G, Tavares PB, Figueiredo JL (2010) Effect of chloride on the sinterization of Au/CeO2 catalysts. Catal Today 154:293–302

    Article  CAS  Google Scholar 

  13. Lakshmanan P, Averseng F, Bion N, Delannoy L, Tatibouët J-M, Louis C (2013) Understanding of the oxygen activation on CeO2 and CeO2/alumina-supported gold catalysts: a study combining 18O/16O isotopic exchange and EPR spectroscopy. Gold Bull 46:233–242

    Article  Google Scholar 

  14. Andreeva D, Ivanov I, Ilieva L, Abrashev MV, Zanella R, Sobczak JW, Lisowski W, Kantcheva M, Avdeev G, Petrov K (2009) Gold catalysts supported on CeO2 doped by rare earth metals for water gas shift reaction: influence of the preparation method. Appl Catal A: Gen 357:159–169

    Article  CAS  Google Scholar 

  15. Sudarsanam P, Mallesham B, Reddy PS, Großmann D, Grünert W, Reddy BM (2014) Nano-Au/CeO2 catalysts for CO oxidation: influence of dopants (Fe, La and Zr) on the physicochemical properties and catalytic activity. Appl Catal B: Environ 144:900–908

    Article  CAS  Google Scholar 

  16. Manzoli M, Vindigni F, Chiorino A, Tabakova T, Idakiev V, Boccuzzi F (2007) New gold catalysts supported on mixed ceria-titania oxides for water-gas shift and preferential CO oxidation reactions. React Kinet Catal Lett 91(2):213–221

    Article  CAS  Google Scholar 

  17. Liao W, Dong Y, Jin M, He T, Suo Z (2008) Preparation of Au/Ce1−xZrxO2 catalysts and their catalytic activities in CO oxidation and water-gas shift reaction. Chin J Catal 29:134–140

    Article  CAS  Google Scholar 

  18. Cíes JM, del Río E, López-Haro M, Delgado JJ, Blanco G, Collins S, Calvino JJ, Bernal S (2010) Fully reversible metal deactivation effects in gold/CeO2–zirconia catalysts: role of the redox state of the support. Angew Chem Int Ed 49:9744–9748

    Article  Google Scholar 

  19. Khder AERS, Hassan HMA, Betiha MA, Khairou KS, Ibrahim AA (2014) CO oxidation over Au and Pd nanoparticles supported on ceria–hafnia mixed oxides. Reac Kinet Mech Cat 112:61–75

    Article  CAS  Google Scholar 

  20. Wachs IE, Weckhuysen BM (1997) Structure and reactivity of surface vanadium oxide species on oxide supports. Appl Catal A: Gen 157:61–90

    Article  Google Scholar 

  21. Radhika T, Sugunan S (2007) Vanadia supported on ceria: Characterization and activity in liquid-phase oxidation of ethylbenzene. Catal Commun 8:150–156

    Article  CAS  Google Scholar 

  22. Wu Z, Rondinone AJ, Ivanov IN, Overbury SH (2011) Structure of vanadium oxide supported on CeO2 by multiwavelength Raman spectroscopy. J Phys Chem C 115:25368–25378

    Article  CAS  Google Scholar 

  23. Abbott HL, Uhl A, Baron M, Lei Y, Meyer RJ, Stacchiola DJ, Bondarchuk O, Shaikhutdinov S, Freund HJ (2010) Relating methanol oxidation to the structure of CeO2-supported vanadia monolayer catalysts. J Catal 272:82–91

    Article  CAS  Google Scholar 

  24. Guan Y, Li C (2007) Effect of CeO2 Redox behavior on the catalytic activity of a VOx/CeO2 catalyst for chlorobenzene oxidation. Chin J Catal 28:392–394

    Article  CAS  Google Scholar 

  25. Peng Y, Wang C, Li J (2014) Structure–activity relationship of VOx/CeO2 nanorod for NO removal with ammonia. Appl Catal B: Environ 144:538–546

    Article  CAS  Google Scholar 

  26. Munteanu G, Ilieva L, Nedyalkova R, Andreeva D (2004) Influence of gold on the reduction behaviour of Au-V2O5/CeO2 catalytic systems: TPR and kinetic parameters of reduction. Appl Catal A: Gen 277:31–40

    Article  CAS  Google Scholar 

  27. Nedyalkova R, Ilieva L, Bernard MC, Goff AH-L, Andreeva D (2009) Gold supported catalysts on titania and CeO2, promoted by vanadia or molybdena for complete benzene oxidation. Mater Chem Phys 116:214–218

    Article  CAS  Google Scholar 

  28. Rajeshwar K, de Tacconi NR (2009) Solution combustion synthesis of oxide semi- conductors for solar energy conversion and environmental remediation. Chem Soc Rev 38:1984–1998

    Article  CAS  Google Scholar 

  29. Suo Z, Weng Y, Jin M, Lv A, Xu J, An L (2005) Influence of gold solution pH value and steeping treatment on CO oxidation reactivity over Au/Al2O3 catalyst. Chin J Catal 26:1022–1026

    CAS  Google Scholar 

  30. Delannoy L, El Hassan N, Musi A, Le To NN, Krafft JM, Louis C (2006) Preparation of supported gold nanoparticles by a modified incipient wetness impregnation method. J Phys Chem B 110:22471–22478

    Article  CAS  Google Scholar 

  31. Yu Q, Chen W, Li Y, Jin M, Suo Z (2010) The action of Pt in bimetallic Au-Pt/CeO2 catalyst for water-gas shift reaction. Catal Today 158:324–328

    Article  CAS  Google Scholar 

  32. Dong Y, Liao W, Suo Z (2015) Uranium oxide-supported gold catalyst for water-gas shift reaction. Fuel Proc Tech 137:164–169

    Article  CAS  Google Scholar 

  33. Wu Y-N, Guo M, Chen F, Luo M-F (2010) Raman spectroscopic study on the solid-state reaction of V2O5/CeO2 catalyst. Acta Phys-Chim Sin 26(9):2417–2421

    CAS  Google Scholar 

  34. Martínez-Huerta MV, Coronado JM, Fernández-García M, Iglesias-Juez A, Deo G, Fierro JLG, Bañares MA (2004) Nature of the vanadia–ceria interface in V5+/CeO2 catalysts and its relevance for the solid-state reaction toward CeVO4 and catalytic properties. J Catal 225:240–248

    Article  Google Scholar 

  35. Daniel M-C, Astruc D (2004) Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  36. Bond GC (1997) Preparation and properties of vanadia/titania monolayer catalysts. Appl Catal A: Gen 157:91–103

    Article  CAS  Google Scholar 

  37. Reddy LH, Reddy GK, Devaiah D, Reddy BM (2012) A rapid microwave-assisted solution combustion synthesis of CuO promoted CeO2–MxOy (M = Zr, La, Pr and Sm) catalysts for CO oxidation. Appl Catal A: Gen 445–446:297–305

    Article  Google Scholar 

  38. Leppelt R, Schumacher B, Plzak V, Kinne M, Behm RJ (2006) Kinetics and mechanism of the low-temperature water–gas shift reaction on Au/CeO2 catalysts in an idealized reaction atmosphere. J Catal 244:137–152

    Article  CAS  Google Scholar 

  39. Meunier FC, Reid D, Goguet A, Shekhtman S, Hardacre C, Burch R, Deng W, Flytzani- Stephanopoulos M (2007) Quantitative analysis of the reactivity of formate species seen by DRIFTS over a Au/Ce(La)O2 water–gas shift catalyst: first unambiguous evidence of the minority role of formates as reaction intermediates. J Catal 247:277–287

    Article  CAS  Google Scholar 

  40. Chen Y, Wang H, Robbie Burch, Hardacre C, Hu P (2011) New insight into mechanisms in water-gas-shift reaction on Au/CeO2(111): a density functional theory and kinetic study. Faraday Discuss 152:121–133

    Article  CAS  Google Scholar 

  41. de Farias AMD, Bargiela P, Maria da Graca CR, Fraga MA (2008) Vanadium-promoted Pt/CeO2 catalyst for water–gas shift reaction. J Catal 260:93–102

    Article  Google Scholar 

  42. Rodriguez JA, Senanayake SD, Stacchiola D, Liu P, Hrbek J (2014) The activation of gold and the water–gas shift reaction: insights from studies with model catalysts. Acc Chem Res 47:773–782

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by Natural Science Foundation of China (Grant 20973148 and 21273193) and by Natural Science Foundation of Shandong, China (Grant ZR2011BM024). The authors also gratefully thank Mrs. Ling Gao from Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, for XPS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanghuai Suo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, W., Lv, H. & Suo, Z. The action of VOx doping on Au/CeO2 catalysts for CO oxidation and water–gas shift reaction. Reac Kinet Mech Cat 116, 491–506 (2015). https://doi.org/10.1007/s11144-015-0921-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-015-0921-5

Keywords

Navigation