Skip to main content
Log in

Removal of phenol from aqueous solutions by adsorption onto Mn–Ce–K solids

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Mn–Ce solids were used for the adsorption of phenol from aqueous solution at 25 and 50 °C. The samples were prepared with a Mn–Ce molar ratio between 0 and 100 % by the alkaline co-precipitation method (KOH). Structural studies showed the formation of cryptomelane, Mn2O3, Mn5O8, Mn3O4 and CeO2. The formation of different phases is a function of the Ce concentration. The adsorption isotherms of phenol were determined and modelled with Langmuir and Freundlich equations. Sample 7/3 had a high adsorption capacity. Thermodynamic parameters, in flat and vertical position of phenol, were calculated. These parameters indicated that the adsorption of phenol onto Mn–Ce was spontaneous and exothermic. The DRIFTS study detected of both phenol and phenolate species adsorbed on the surface and the aromatic ring of phenol is parallel to the surface. The interaction between Mn and Ce enhanced the reducibility of the oxides and activated oxygen, which is favorable for the adsorption process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hamoudi S, Larachi F, Sayari A (1998) Wet oxidation of phenolic solutions over heterogeneous catalysts: degradation profile and catalyst behavior. J Catal 177:247–258

    Article  Google Scholar 

  2. Qin G, Yao Y, Wei W, Zhang T (2013) Preparation of hydrophobic granular silica aerogels and adsorption of phenol from water. Appl Surf Sci 280:806–811

    Article  CAS  Google Scholar 

  3. Imamura S (1999) Catalytic and noncatalytic wet oxidation. Ind Eng Chem Res 38:1743–1753

    Article  CAS  Google Scholar 

  4. Wu J, Rudy K, Spark J (2000) Oxidation of aqueous phenol by ozone and peroxidise. Adv Environ Res 4:339–346

    Article  Google Scholar 

  5. Namane A, Ali O, Cabana H, Hellal A (2012) Evaluation of biological treatments for the adsorption of phenol from polluted waters. Ads Sci Tech 30:521–532

    Article  CAS  Google Scholar 

  6. Qiang Z, Chang JH, Huang CP (2003) Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions. Water Res 37(1):85–94

    Google Scholar 

  7. Hidalgo MC, Murcia JJ, Navío JA, Colón G (2011) Photodeposition of gold on titanium dioxide for photocatalytic phenol oxidation. Appl Catal A 397:112–120

    Article  CAS  Google Scholar 

  8. Yang L, Chen Z, Zhang D, Liu Y, Han Y, Shen J (2011) Adsorption of dimethylamine from aqueous solution by manganese dioxide. Water Sci Tech 63:45–50

    Article  CAS  Google Scholar 

  9. Hu B, Chen C, Frueh SJ, Jin L, Joesten R, Sui S, Suib L (2010) Removal of aqueous phenol by adsorption and oxidation with doped hydrophobic cryptomelane-type manganese oxide (K-OMS-2) nanofibers. J Phys Chem C 114:9835–9844

    Article  CAS  Google Scholar 

  10. Fu Y, Hansen RS, Bartell FE (1948) Thermodynamics of adsorption from solutions. I. The molality and activity co-efficient of adsorbed layers. J Phys Chem 52:374–386

    Article  CAS  Google Scholar 

  11. Bertoncini C, Odetti H (2000) Computer simulation of phenol physisorption on graphite. Langmuir 16:7457–7463

    Article  CAS  Google Scholar 

  12. Linares J, Huertas F, Caballero E, Jimenez de Cisneros C (1998) Physicochemical relationships during a KCl-bentonite hydrothermal reaction. Clay Miner 33:475–482

    Article  CAS  Google Scholar 

  13. Niwas R, Gupta U, Khan AA, Varshney KG (2000) The adsorption of phosphamidon on the surface of styrene supported zirconium (IV) tungstophosphate: a thermodynamic study. Colloids Surf A 164:115–119

    Article  CAS  Google Scholar 

  14. Julien CM, Massot M (2003) Spectroscopic studies of the structural transitions in positive electrodes for lithium batteries. J Power Sources 119–121:743–748

    Article  Google Scholar 

  15. Boyero Macstre J, Fernandez Lopez E, Gallardo-Amores JM, Ruano Casero R, Sanchez Escribano V, Perez Bernal E (2001) Influence of tile synthesis parameters on the structural and textural properties of precipitated manganese oxides. Int J Inorg Mater 7:889–899

    Article  Google Scholar 

  16. Gadsden JA (1975) Infrared spectra of minerals and related inorganic compounds. Butterworths, Sussex

    Google Scholar 

  17. Tseng TK, Chu H, Hsu HH (2003) Characterization of γ-alumina-supported manganese oxide as an incineration catalyst for trichloroethylene. Environ Sci Technol 37:171–176

    Article  CAS  Google Scholar 

  18. Ferrandon M, Carno J, Jaras S, Bjornbom E (1999) Total oxidation catalysts based on manganese or copper oxides and platinum or palladium I: characterisation. Appl Catal A 180:141–151

    Article  CAS  Google Scholar 

  19. Oku M (1995) X-ray photoelectron spectra of KMnO4 and K2MnO4 fractured in situ. J Electron Spectrosc Relat Phenom 74:135–148

    Article  CAS  Google Scholar 

  20. Larachi F, Pierre J, Adnot A, Bernis A (2002) Ce 3d XPS study of composite CexMn1-xO2-y wet oxidation catalysts. Appl Surf Sci 195:236–250

    Article  CAS  Google Scholar 

  21. Beche E, Charvin P, Perarnau D, Abanades S, Flamant G (2008) Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz). Surf Interface Anal 40:264–267

    Article  CAS  Google Scholar 

  22. Kapteijn F, Singoredjo L, Andreini A, Moulijn JA (1994) Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia. Appl Catal B 3:173–189

    Article  CAS  Google Scholar 

  23. Stobbe ER, de Boer BA, Geus JW (1999) The reduction and oxidation behaviour of manganese oxides. Catal Today 47:161–167

    Article  CAS  Google Scholar 

  24. Tang X, Chen J, Li Y, Li Y, Xu Y, Shen W (2006) Complete oxidation of formaldehyde over Ag/MnOx–CeO2 catalysts. Chem Eng Sci 118:119–125

    Article  CAS  Google Scholar 

  25. D´Alessandro O, Thomas H, Sambeth JE (2012) An analysis of the first steps of phenol adsorption-oxidation over coprecipitated Mn–Ce catalysts: a DRIFTS study. Reac Kinet Mech Cat 107:295–309

    Article  Google Scholar 

  26. Hu B, Chen Ch, Frueh S, Jin L, Joesten R, Suib S (2010) Removal of Aqueous phenol and oxidation with doped hydrophobic cryptomelane-type manganese oxide (K-OMS-2) nanofibers. J Phys Chem C 114:9835–9844

    Article  CAS  Google Scholar 

  27. Li Y, Du Q, Liu T, Sun J, Liao Y, Xia Y, Xia L, Wang Z, Zhang W, Wang K, Zhu H, Wu D (2012) Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto graphene. Mater Res Bull 47:1898–1904

    Article  CAS  Google Scholar 

  28. Mathew Th, Vijayaraj M, Pai Sh, Tope B, Hegde S, Rao B, Gopinath Ch (2004) A mechanism approach to phenol methylation on Cu1-xCoxFe2O4: FTIR study. J Catal 227:175–185

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Graciela Valle for your technical assistance. In addition, the authors thank the financial support by CONICET and UNLP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge E. Sambeth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Alessandro, O., Thomas, H. & Sambeth, J.E. Removal of phenol from aqueous solutions by adsorption onto Mn–Ce–K solids. Reac Kinet Mech Cat 113, 257–267 (2014). https://doi.org/10.1007/s11144-014-0747-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-014-0747-6

Keywords

Navigation