Skip to main content
Log in

Adsorption of p-chlorophenol and p-nitrophenol in single and binary systems from solution using magnetic activated carbon

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Magnetic activated carbon (MAC) was prepared by co-precipitation. These particles had attractive adsorption capacity and could be easily separated from aqueous. MAC was used as adsorbent to remove p-chlorophenol (p-CP) and p-nitrophenol (p-NP) from solution in single and binary systems. In a single system, the equilibrium time was 60 min, the best initial pH was 3-8 and 3-6 for p-CP or p-NP adsorption, respectively. The existence of salt ions had little influence on the adsorption process, while surfactant had negative influence. The adsorption quantity from experiments was up to 97.3 mg·g−1 for p-CP and 116 mg·g−1 for p-NP at 293 K, respectively. Freundlich model and pseudo-second-order kinetic model fitted well the adsorption behavior. Thermodynamic parameters were calculated and the results showed that the process was spontaneous, exothermic and entropy production in nature. In addition, p-CP or p-NP-loaded MAC could be well reused by 0.01 mol·L−1 sodium hydroxide solution as regeneration agent. Kinetic process of desorption was fitted best by pseudo-second-order kinetic model. Results from the binary system showed that competitive adsorption existed during the process, and p-NP adsorption on MAC was easier than p-CP. Freundlich model well fitted the adsorption behavior in the binary system. Hydrogen-bonding, electron donor-acceptor and π-π interactions may be the main mechanisms of adsorption. MAC proved to be an excellent adsorbent for the removal of p-CP and p-NP from solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Anbia and S. Khoshbooei, J. Nanostruct. Chem, 5, 139 (2015).

    Article  CAS  Google Scholar 

  2. B. Koubaissy, J. Toufaily, M. El-murr, T. Hamieh, P. Magnoux and G. Joly, Phys. Procedia, 21, 220 (2011).

    Article  CAS  Google Scholar 

  3. L. R. Rad, I. Haririan and F. Divsar, Spectrochim. Acta A, 136, 423 (2015).

    Article  CAS  Google Scholar 

  4. C. A. Acosta, C. Pasquali, G. Paniagua, R. M. Garcinuño and P. F. Hernando, Environ. Pollut., 236, 265 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. C. Borras, T. Laredo and B. R. Scharifker, Electrochim. Acta, 48, 2775 (2003).

    Article  CAS  Google Scholar 

  6. H. Ozaki and H. Li, Water Res., 36, 123 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Y Li and K. C. Loh, J. Appl. Polym. Sci., 105, 1732 (2010).

    Article  CAS  Google Scholar 

  8. S. H. Lin and C. S. Wang, J. Hazard. Mater., 90, 205 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. C. Sheng, X. M. Zheng, K. Fei, G. H. Wu, L. L. Luo, G. Yong H. L. Liu, W Ying, H. X. Yu and Z. G. Zou, Mater. Chem. Phys., 129, 1184 (2011).

    Article  CAS  Google Scholar 

  10. J. Wu and H. Q. Yu, J. Hazard. Mater., 137, 498 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. J. Su, H. F. Lin, Q. P. Wang, Z. M. Xie and Z. L. Chen, Desalination, 269, 163 (2011).

    Article  CAS  Google Scholar 

  12. M. Salman, M. Athar and U. Farooq, Rev. Environ. Sci. Bio., 14, 211 (2015).

    Article  CAS  Google Scholar 

  13. J. L. Wang and C. Chen, Biotechnol. Adv., 17, 195 (2009).

    Article  CAS  Google Scholar 

  14. A. Bhatnagar, W. Hogland, M. Marques and M. Sillanpää, Chem. Eng. J., 219, 499 (2013).

    Article  CAS  Google Scholar 

  15. P. Cañizares, M. Carmona, O. Baraza, A. Delgado and M. A. Rodrigo, J. Hazard. Mater., 131, 243 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. N. Yang, S. M. Zhu, D. Zhang and S. Xu, Mater. Lett., 62, 645 (2008).

    Article  CAS  Google Scholar 

  17. S. Singh, Res. J. Chem. Sci., 6, 361 (2015).

    Google Scholar 

  18. S. Han, F. Zhao, J. Sun, B. Wang, R. Y. Wei and S. Q. Yan, J. Magn. Magn. Mater., 341, 133 (2013).

    Article  CAS  Google Scholar 

  19. Y. C. Rong, H. Li, L. H. Xiao, Q. Wang, Y. Y. Hu, S. S. Zhang and R. P. Han, Desalin. Water. Treat, 106, 273 (2018).

    Article  CAS  Google Scholar 

  20. B. Kakavandi, M. Jahangiri-rad, M. Rafiee, A. R. Esfahani and A. A. Babaei, Micropor. Mesopor. Mater., 231, 192 (2016).

    Article  CAS  Google Scholar 

  21. V. L. Lassalle, R. D. Zysler and M. L. Ferreira, Mater. Chem. Phys., 130, 624 (2011).

    Article  CAS  Google Scholar 

  22. L. C. A. Oliveira, R. Rios, J. D. Fabris, V. Garg, K. Sapag and R. M. Lago, Carbon, 40, 2177 (2002).

    Article  CAS  Google Scholar 

  23. A. Tóth, A. Töröcsik, E. Tombácz and K. László, J. Colloid Interface Sci., 387, 244 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Q. M. Wei and T. Nakato, Micropor. Mesopor. Mater., 96, 84 (2006).

    Article  CAS  Google Scholar 

  25. E. F. Mohamed, C. Andriantsiferana, A. M. Wilhelm and H. Delmas, Environ. Technol., 32, 1325 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Y. B. Jiao, D. L. Han, Y. Z. Lu, Y. C. Rong, L. Y. Fang, Y. L. Liu and R. P. Han, Desalin. Water. Treat., 77, 247 (2017).

    Article  CAS  Google Scholar 

  27. T. Zhou, L. Y. Fang, X. W. Wang, M. Y. Han, S. S. Zhang and R. P. Han, Desalin. Water Treat., 70, 294 (2017).

    Article  CAS  Google Scholar 

  28. I. K. Battisha, H. H. Afify and M. Ibrahim, J. Magn. Magn. Mater., 306, 211 (2006).

    Article  CAS  Google Scholar 

  29. J. Y. Song, W. H. Zou, Y. Y. Bian, F. Y. Su and R. P. Han, Desalination, 265, 119 (2011).

    Article  CAS  Google Scholar 

  30. R. D. Zhang, J. H. Zhang, X. N. Zhang, C. C. Dou and R. P. Han, J. Taiwan Inst. Chem. E., 45, 2578 (2014).

    Article  CAS  Google Scholar 

  31. N. Li, J. Chen and Y. P. Shi, Anal. Chim. Acta, 949, 23 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. G. Mihoc, R. Ianoç and C. Păcurariu, Water Sci. Technol., 69, 385 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. B. Zhang, F. Li, T. Wu, D. J. Sun and Y. J. Li, Colloids Surf, A., 464, 78 (2015).

    Article  CAS  Google Scholar 

  34. S. K. Srivastava and R. Tyagi, Water Res., 29, 483 (1995).

    Article  CAS  Google Scholar 

  35. F. Zhang, Z. Wei, W. N. Zhang and H. Y. Cui, Spectrochim. Acta A, 182, 116 (2017).

    Article  CAS  Google Scholar 

  36. Y. S. Ho and G. Mckay, Process Biochem., 34, 451 (1999).

    Article  CAS  Google Scholar 

  37. C.W. Cheung, J.F. Porterand G. Mckay, Sep. Purif. Technol., 19, 55 (2000).

    Article  CAS  Google Scholar 

  38. B. H. Hameed and A. A. Rahman, J. Hazard. Mater., 160, 576 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. A. E. Ofomaja and E. I. Unuabonah, Carbohydr. Polym., 83, 1192 (2011).

    Article  CAS  Google Scholar 

  40. A. E. Vasu, E-J. Chem, 5, 224 (2012).

    Article  Google Scholar 

  41. I. A. Bello, M. A. Oladipo, A. A. Giwa and D. O. Adeoye, Int. J. Basic Appl. Sci., 2, 79 (2013).

    Google Scholar 

  42. J. M. Li, X. G. Meng, C. W. Hu and J. Du, Bioresour. Technol., 100, 1168 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. H. A. Arafat, M. Franz and N. G. Pinto, Langmuir, 15, 5997 (1999).

    Article  CAS  Google Scholar 

  44. K. Yang, Q. Jing, W. Wu, L. Zhu and B. Xing, Environ. Sci. Technol., 44, 681 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. M. Ahmaruzzaman and D. K. Sharma, J. Colloid Interface Sci., 287, 14 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. K. A. Halhouli, N. A. Darwish and Y. R. Y. Al-Jahmany, Sep. Sci. Technol., 32, 3027 (1997).

    Article  CAS  Google Scholar 

  47. G. Crini, Dyes Pigm., 77, 415 (2008).

    Article  CAS  Google Scholar 

  48. R. P. Han, Y. F. Wang, P. Han, J. Shi, J. Yang and Y. S. Lu, J. Hazard. Mater., 137, 550 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. M. Chabani, A. Amraneb and A. Bensmaili, Chem. Eng. J, 125, 111 (2006).

    Article  CAS  Google Scholar 

  50. T. S. Anirudhan and M. Ramachandran, J. Water Process Eng., 1, 46 (2014).

    Article  Google Scholar 

  51. C. Y. Chang, W. T. T. Sai, C. H. Ing and C. H. Chang, J. Colloid Interface Sci., 260, 273 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Y. Fan, R. F. Yang, Z. M. Lei, N. Liu, J. L. Lv, S. R. Zhai, B. Zhai and L. Wang, Korean J. Chem. Eng., 33, 1416 (2016).

    Article  CAS  Google Scholar 

  53. T. Zhou, W. Z. Lu, L. F. Liu, H. M. Zhu, Y. B. Jiao, S. S. Zhang and R. P. Han, J. Mol. Liq., 211, 909 (2015).

    Article  CAS  Google Scholar 

  54. M. L. Nguyen and R. S. Juang, Biotechnol. Bioproc. E., 20, 614 (2015).

    Article  CAS  Google Scholar 

  55. J. M. Chern and Y. W. Chien, Water Res., 37, 2347 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. S. R. Ha and S. Vinitnantharat, Environ. Technol., 21, 387 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Runping Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rong, Y., Han, R. Adsorption of p-chlorophenol and p-nitrophenol in single and binary systems from solution using magnetic activated carbon. Korean J. Chem. Eng. 36, 942–953 (2019). https://doi.org/10.1007/s11814-019-0267-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0267-1

Keywords

Navigation