Skip to main content
Log in

High Stable Al-MCM-41: Structural Characterization and Evaluation for Removal of Methylene Blue from Aqueous Solution

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Aluminosilicate (Al-MCM-41) was synthesized via a modified wet-method in a Si/Al atomic ratio of 13.64:1.00 and calcination at 500 °C. The structural as well as the thermal stability were studied by powder X-ray diffractometry (XRD), thermogravimetric analysis (TGA), scanning electron microscope (SEM), Fourier transform infrared (FTIR) analysis and surface area measurements. Al-MCM-41 was confirmed to acquire a mesoporous structure with a high stability against hydrolysis which was attributed to the homogeneous dispersion of Al(III) in the silica framework. The adsorption parameters of the cationic dye methylene blue (MB), on Al-MCM-41 were investigated in aqueous solutions. The adsorption isotherm data showed a notable monolayer adsorption capacity (285 mg g−1) of MB and fitted well the Langmuir adsorption model and the pseudo-second-order kinetics model. The adsorbent was applied successfully for removing 92.0–94.7% of MB from spiked fresh water samples and the initial capacity was recovered by 0.05 mol L−1 HCl or calcination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abou-El-Sherbini KS, Schiel D, Stosch R, Weidler P, Höll WH (2011) Stabilization of quercetin-functionalized silica gel against hydrolysis by blocking silanol groups with TiO2 or ZrO2 and its application for the removal of hg (II). J Sol-Gel Sci Technol 57:57–67

    CAS  Google Scholar 

  2. Abou-El-Sherbini KS, Weidler PG, Schiel D, Amr MH, Niemann H, El-Dafrawy S, Höll WH (2014) Stabilization of silica gel against hydrolysis by doping with F or Zr (IV). Green and Sustainable Chemistry 4(24):32

    Google Scholar 

  3. Abou-El-Sherbini KS, Amer MH, Abdel-Aziz MS, Hamzawy EM, Sharmoukh W, Elnagar MM (2018) Encapsulation of Biosynthesized Nano-Silver in Silica Composites for Sustainable Antimicrobial Functionality. Global Challenges 2(8). https://doi.org/10.1002/gch2.201800048

  4. Abou-El-Sherbini KS, Amr MHA, Abdel-Aziz MS, Hamzawy EMA, Sharmoukh W, Elnagar MM (2019) under publication.

  5. Adam J et al (2005) Pyrolysis of biomass in the presence of Al-MCM-41 type catalysts. Fuel 84:1494–1502

    CAS  Google Scholar 

  6. Adeyemo AA, Adeoye IO, Bello OS (2017) Adsorption of dyes using different types of clay: a review. Appl Water Sci 7:543–568. https://doi.org/10.1007/s13201-015-0322-y

    Article  CAS  Google Scholar 

  7. Adjdir M, Ali-Dahmane T, Friedrich F, Scherer T, Weidler P (2009) The synthesis of Al-MCM-41 from volclay—a low-cost Al and Si source. Appl Clay Sci 46:185–189

    CAS  Google Scholar 

  8. American Society of Health-System Pharmacists, AHFS Drug Information. 2008, Bethesda, Md.: American Society of Health-System Pharmacists,: Bethesda, Maryland pp. 1840.

  9. Borade RB, Clearfield A (1995) Synthesis of aluminum rich MCM-41. Catal Lett 31:267–272. https://doi.org/10.1007/bf00808839

    Article  CAS  Google Scholar 

  10. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multi molecular layers. J Am Chem Soc 60:309–319

    CAS  Google Scholar 

  11. Cashin VB, Eldridge DS, Yu A, Zhao D (2018) Surface functionalization and manipulation of mesoporous silica adsorbents for improved removal of pollutants: a review environmental science: Water Research & Technology

  12. Cejka J, Van Bekkum H, Corma A, Schueth F (2007) Introduction to zeolite molecular sieves vol 168. Elsevier

  13. Cheng Z-L, Y-x L, Liu Z (2018) Study on adsorption of rhodamine B onto Beta zeolites by tuning SiO 2/Al 2 O 3 ratio. Ecotoxicol Environ Saf 148:585–592

    CAS  PubMed  Google Scholar 

  14. Christian Baerlocher LM, Wei Wan, Xiaodong Zou, Christine Kirschhock, Eric Breynaert, Anton Kirschhock, Vladislav Blatov, Olga Blatova, Mike Treacy (1996–2016) The Database of Zeolite Structures

  15. Dang W, Han S, Xu J, Yan X, Hou W (2004) Effect of formamide on the morphologies of ordered mesoporous silica. Chinese J Inorg Chem 20:679–682

    CAS  Google Scholar 

  16. Doke SM, Yadav GD (2014) Novelties of combustion synthesized titania ultrafiltration membrane in efficient removal of methylene blue dye from aqueous effluent. Chemosphere 117:760–765

    CAS  PubMed  Google Scholar 

  17. Dong Y, Lu B, Zang S, Zhao J, Wang X, Cai Q (2011) Removal of methylene blue from coloured effluents by adsorption onto SBA-15. J Chem Technol Biotechnol 86:616–619

    CAS  Google Scholar 

  18. Drweesh SA, Fathy NA, Wahba MA, Hanna AA, Akarish AIM, Elzahany EAM, El-Sherif IY, Abou-El-Sherbini KS (2016) Equilibrium, kinetic and thermodynamic studies of Pb (II) adsorption from aqueous solutions on HCl-treated Egyptian kaolin. J Environ Chem Eng 4:1674–1684

    CAS  Google Scholar 

  19. Du E, Yu S, Zuo L, Zhang J, Huang X, Wang Y (2011) Pb (II) sorption on molecular sieve analogues of MCM-41 synthesized from kaolinite and montmorillonite. Appl Clay Sci 51:94–101

    CAS  Google Scholar 

  20. Eftekhari S, Habibi-Yangjeh A, Sohrabnezhad S (2010) Application of AlMCM-41 for competitive adsorption of methylene blue and rhodamine B: thermodynamic and kinetic studies. J Hazard Mater 178:349–355

    CAS  PubMed  Google Scholar 

  21. Flanigen E, Khatami H, Seymenski H, Flanigen E, Sand L (1971) Adv. Chemistry series 101 American Chemical Society, Washington, DC:201–228

  22. Groen JC, Peffer LA, Pérez-Ramírez J (2003) Pore size determination in modified micro-and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous Mesoporous Mater 60:1–17

    CAS  Google Scholar 

  23. Hassanien MM, Abou-El-Sherbini KS, Al-Muaikel NS (2010) Immobilization ofmethylene blue onto bentonite and its application in the extraction of mercury (II). J Hazard Mater 178:94–100

    CAS  PubMed  Google Scholar 

  24. Henze M, Harremoes P, la Cour Jansen J, Arvin E (2001) Wastewater treatment: biological and chemical processes. Springer Science & Business Media

    Google Scholar 

  25. Hernandez-Martínez A et al (2018) Swelling and methylene blue adsorption of poly (N, N-dimethylacrylamide-co-2-hydroxyethyl methacrylate) hydrogel. React Funct Polym 122:75–84

    Google Scholar 

  26. Hosseinian L, Weiner M, Levin MA, Fischer GW (2016) Methylene blue: magic bullet for vasoplegia? Anesth Analg 122:194–201

    CAS  PubMed  Google Scholar 

  27. Huo C, Ouyang J, Yang H (2014) CuO nanoparticles encapsulated inside Al-MCM-41 mesoporous materials via direct synthetic route. Sci Rep 4:3682

    PubMed  PubMed Central  Google Scholar 

  28. Jorfi S, Barzegar G, Ahmadi M, Soltani RDC, Takdastan A, Saeedi R, Abtahi M (2016) Enhanced coagulation-photocatalytic treatment of acid red 73 dye and real textile wastewater using UVA/synthesized MgO nanoparticles. J Environ Manag 177:111–118

    CAS  Google Scholar 

  29. Khanday WA, Marrakchi F, Asif M, Hameed BH (2019) Mesoporous zeolite–activated carbon composite from oil palm ash as an effective adsorbent for methylene blue. J Taiwan Inst Chem Eng. https://doi.org/10.1016/j.jtice.2016.10.029

  30. Kruk M, Jaroniec M, Sakamoto Y, Terasaki O, Ryoo R, Ko CH (2000) Determination of pore size and pore wall structure of MCM-41 by using nitrogen adsorption, transmission electron microscopy, and X-ray diffraction. J Phys Chem B 104:292–301

    CAS  Google Scholar 

  31. Kulprathipanja S (2010) Zeolites in industrial separation and catalysis. Wiley Online Library, Kumari S, Chauhan GS, Ahn JH (2016) Novel cellulose nanowhiskers-based polyurethane foam for rapid and persistent removal of methylene blue from its aqueous solutions. Chem Eng J 304:728–736. https://doi.org/10.1016/j.cej.2016.07.008

    Article  CAS  Google Scholar 

  32. Kurade MB, Waghmode TR, Patil SM, Jeon B-H, Govindwar SP (2017) Monitoring the gradual biodegradation of dyes in a simulated textile effluent and development of a novel triple layered fixed bed reactor using a bacterium-yeast consortium. Chem Eng J 307:1026–1036. https://doi.org/10.1016/j.cej.2016.09.028

    Article  CAS  Google Scholar 

  33. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403. https://doi.org/10.1021/ja02242a004

    Article  CAS  Google Scholar 

  34. Li Y, Yu J (2014) New stories of zeolite structures: their descriptions, determinations, predictions, and evaluations. Chem Rev 114:7268–7316

    CAS  PubMed  Google Scholar 

  35. Li Z, Chang P-H, Jiang W-T, Jean J-S, Hong H (2011) Mechanism of methylene blue removal from water by swelling clays. Chem Eng J 168:1193–1200. https://doi.org/10.1016/j.cej.2011.02.009

    Article  CAS  Google Scholar 

  36. Li D, Yan J, Liu Z (2016) Adsorption kinetic studies for removal of methylene blue using activated carbon prepared from sugar beet pulp. Int J Environ Sci Technol 13:1815–1822

    CAS  Google Scholar 

  37. Liu X, Wei Q (2016) Removal of methylene blue from aqueous solution using porous starch-g-poly (acrylic acid) super adsorbents. RSC Adv 6:79853–79858

    CAS  Google Scholar 

  38. Liu B, Chen X, Zheng H, Wang Y, Sun Y, Zhao C, Zhang S (2018) Rapid and efficient removal of heavy metal and cationic dye by carboxylate-rich magnetic chitosan flocculants: role of ionic groups. Carbohydr Polym 181:327–336

    CAS  PubMed  Google Scholar 

  39. Malamis S, Katsou E (2013) A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite:examination of process parameters, kinetics and isotherms. J Hazard Mater 252:428–461

    PubMed  Google Scholar 

  40. Meynen V, Cool P, Vansant E (2009) Verified syntheses of mesoporous materials. Microporous Mesoporous Mater 125:170–223

    CAS  Google Scholar 

  41. Mohammed M, Shitu A, Ibrahim A (2014) Removal of methylene blue using low cost adsorbent: a review. Research Journal of Chemical Sciences ISSN 2231:606X

    Google Scholar 

  42. Mouni L et al (2018) Removal of methylene blue from aqueous solutions by adsorption on kaolin: kinetic and equilibrium studies. Appl Clay Sci 153:38–45

    CAS  Google Scholar 

  43. Naeem S, Baheti V, Wiener J, Marek J (2016) Removal of methylene blue from aqueous media using activated carbon web. J Text Inst:1–9

  44. North MR, Fleischer MA, Swaddle TW (2001) Precipitation from alkaline aqueous aluminosilicate solutions. Can J Chem 79:75–79

    CAS  Google Scholar 

  45. Ovchinnikov OV, Smirnov MS, Shatskikh TS, Khokhlov VY, Shapiro BI, Vitukhnovsky AG, Ambrozevich SA (2014) Spectroscopic investigation of colloidal CdS quantum dots–methylene blue hybrid associates. J Nanopart Res 16:2286

    Google Scholar 

  46. Pathania D, Sharma S, Singh P (2017) Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arab J Chem 10:S1445–S1451

    CAS  Google Scholar 

  47. Pauly TR, Petkov V, Liu Y, Billinge SJ, Pinnavaia TJ (2002) Role of framework sodium versus local framework structure in determining the hydrothermal stability of MCM-41 mesostructures. J Am Chem Soc 124:97–103

    CAS  PubMed  Google Scholar 

  48. Pharmacists ASoHS (2008) AHFS drug information 2008. Bethesda

    Google Scholar 

  49. Rao C, Venkataraghavan R, Kasturi T (1964) Contribution to the infrared spectra of organosulphur compounds. Can J Chem 42:36–42

    CAS  Google Scholar 

  50. Rida K, Bouraoui S, Hadnine S (2013) Adsorption of methylene blue from aqueous solution by kaolin and zeolite. Appl Clay Sci 83:99–105

    Google Scholar 

  51. Salem MA, Elsharkawy RG, Hablas MF (2016) Adsorption of brilliant green dye by polyaniline/silver nanocomposite: kinetic, equilibrium, and thermodynamic studies. Eur Polym J 75:577–590

    CAS  Google Scholar 

  52. Sepehrian H, Ahmadi S, Waqif-Husain S, Faghihian H, Alighanbari H (2010) Adsorption studies of heavy metal ions on mesoporous aluminosilicate, novel cation exchanger. J Hazard Mater 176:252–256

    CAS  PubMed  Google Scholar 

  53. Serrano DP, Melero JA, Morales G, Iglesias J, Pizarro P (2018) Progress in the design of zeolite catalysts for biomass conversion into biofuels and bio-based chemicals. Catal Rev 60:1–70

    CAS  Google Scholar 

  54. Shahbazi A, Younesi H, Badiei A (2013) Batch and fixed-bed column adsorption of Cu (II), Pb (II) and Cd (II) from aqueous solution onto functionalised SBA-15 mesoporous silica. Can J Chem Eng 91:739–750

    CAS  Google Scholar 

  55. Shakoor S, Nasar A (2016) Removal of methylene blue dye from artificially contaminated water using Citrus limetta peel waste as a very low cost adsorbent. J Taiwan Inst Chem Eng 66:154–163. https://doi.org/10.1016/j.jtice.2016.06.009

    Article  CAS  Google Scholar 

  56. Soares PA, Batalha M, Souza SMGU, Boaventura RA, Vilar VJ (2015) Enhancement of a solar photo-Fenton reaction with ferric organic ligands for the treatment of acrylic-textile dyeing wastewater. J Environ Manag 152:120–131

    CAS  Google Scholar 

  57. Sohrabnezhad S, Pourahmad A (2010) Comparison absorption of new methylene blue dye in zeolite and nanocrystal zeolite. Desalination 256:84–89

    CAS  Google Scholar 

  58. Souza MJ, Araujo AS, Pedrosa AM, Marinkovic BA, Jardim PM, Morgado E (2006) Textural features of highly ordered Al-MCM-41 molecular sieve studied by X-ray diffraction, nitrogen adsorption and transmission electron microscopy. Mater Lett 60:2682–2685

    CAS  Google Scholar 

  59. Sulistiyo YA et al (2017) Silica gels from coal fly ash as methylene blue adsorbent: isotherm and kinetic studies. Bulletin of Chemical Reaction Engineering & Catalysis 12(2):263–272

    CAS  Google Scholar 

  60. Tardivo JP et al (2005) Methylene blue in photodynamic therapy: from basic mechanisms to clinical applications. Photodiagn Photodyn Ther 2:175–191

    CAS  Google Scholar 

  61. Tran HN, Van Viet P, Chao H-P (2018) Surfactant modified zeolite as amphiphilic and dual-electronic adsorbent for removal of cationic and oxyanionic metal ions and organic compounds. Ecotoxicol Environ Saf 147:55–63

    CAS  PubMed  Google Scholar 

  62. Wang Z, Ling H, Shi J, Stampfl C, Yu A, Hunger M, Huang J (2018) Acidity enhanced [Al] MCM-41 via ultrasonic irradiation for the Beckmann rearrangement of cyclohexanone oxime to ɛ-caprolactam. J Catal 358:71–79

    CAS  Google Scholar 

  63. Wei J, Wu D, Diao G, Peng J (2000) Modeling of lead adsorption on kaolinite. Diqiu Huaxue 29:397–401

    CAS  Google Scholar 

  64. Wu S, Li F, Xu R, Wei S, Li G (2010) Synthesis of thiol functionalized MCM-41 mesoporous silicas and its application in Cu (II), Pb (II), Ag (I), and Cr (III) removal. J Nanopart Res 12:2111–2124

    CAS  Google Scholar 

  65. Xiao X, Zhang F, Feng Z, Deng S, Wang Y (2015) Adsorptive removal and kinetics of methylene blue from aqueous solution using NiO/MCM-41 composite. Physica E: Low-dimensional Systems and Nanostructures 65:4–12

    CAS  Google Scholar 

  66. Yanagisawa T, Shimizu T, Kuroda K, Kato C (1990) The preparation of alkyltriinethylaininonium–kaneinite complexes and their conversion to microporous materials. Bull Chem Soc Jpn 63:988–992

    CAS  Google Scholar 

  67. Yue Y, Gédéon A, Bonardet J-L, J-B D’E, Fraissard J, Melosh N (1999, 1967–1968) Direct synthesis of AlSBA mesoporous molecular sieves: characterization and catalytic activities. Chem Commun

  68. Zanjanchi M, Golmojdeh H, Arvand M (2009) Enhanced adsorptive and photocatalytic achievements in removal of methylene blue by incorporating tungstophosphoric acid–TiO2 into MCM-41. Journal of hazardous materials 169(1-3):233–239

    CAS  PubMed  Google Scholar 

  69. Zhang Z et al (2001) Mesoporous aluminosilicates with ordered hexagonal structure, strong acidity, and extraordinary hydrothermal stability at high temperatures. J Am Chem Soc 123:5014–5021

    CAS  PubMed  Google Scholar 

  70. Zhang S, Wang Z, Zhang Y, Pan H, Tao L (2016) Adsorption of methylene blue on organosolv lignin from rice straw. Procedia Environ Sci 31:3–11

    Google Scholar 

  71. Zhao G, Li C, Wu X, Yu J, Jiang X, Hu W, Jiao F (2018) Reduced graphene oxide modified NiFe-calcinated layered double hydroxides for enhanced photocatalytic removal of methylene blue. Appl Surf Sci 434:251–259

    CAS  Google Scholar 

Download references

Acknowledgments

The authors:Wafaa E, Rashwan, Khaled S. Abou-El-Sherbini, Mohammed A. Wahba, Sohair A. Sayed Ahmed, Peter G. Weidler deeply express thanks for the National Research Centre, Egypt and the Institute of Functional Interfaces, Karlsruhe Institute of Technology, Germany as this work was achieved under their auspices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed A. Wahba.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashwan, W.E., Abou-El-Sherbini, K.S., Wahba, M.A. et al. High Stable Al-MCM-41: Structural Characterization and Evaluation for Removal of Methylene Blue from Aqueous Solution. Silicon 12, 2017–2029 (2020). https://doi.org/10.1007/s12633-019-00262-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-019-00262-x

Keywords

Navigation